Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химия аналитическая минеральная

    Среднее специальное химическое образование учащиеся могут получить в средних специальных учебных заведениях на базе девяти классов (продолжительность обучения, как правило, 3 года 8 месяцев) и на базе одиннадцати классов (продолжительность обучения — 2 года 8 месяцев). Приобретаемые квалификации по специальностям техник-механик (химическое, компрессорное и холодильное машиностроение, оборудование химических и нефтеперерабатывающих заводов, оборудование коксохимических заводов) техник-электромеханик (эксплуатация автоматических устройств химических производств) техник-технолог (химическая технология нефти и газа, технология коксохимического производства, технология стекла и изделий из него, технология электрохимических производств, технология электродов и электроугольных производств, электрохимические покрытия, технология огнеупорных материалов, технология органического синтеза, технология органических красителей и промежуточных продуктов, парфюмерно-синтетическое производство, химическая технология синтетических смол и пластических масс, технология лаков и красок, технология резин, технология синтетического каучука, технология химических реактивов и особо чистых веществ, технология химических волокон, технология неорганических веществ и минеральных удобрений и др.) техник-химик (аналитическая химия, нефтепромысловая химия) техник-плановик (планирование на предприятиях химической промышленности). Срок обучения этим специальностям после IX класса — 2 года 11 месяцев, после XI класса — 1 год 10 месяцев. [c.201]


    Атомы элементов, образующих молекулу органического вещества, обычно соединены ковалентными связями, и поэтому орга- нические соединения не способны диссоциировать в водных растворах с образованием соответствующих ионов. Между тем большая часть качественных реакций, используемых в аналитической химии для определения отдельных элементов, представляет собой ионные реакции. Поэтому первой задачей анализа органического вещества является разрушение его молекулы при этом образующие ее атомы переходят в минеральные соединения, легко открываемые обычными реакциями аналитической химии. Наиболее обычными способами разрушения органических веществ являют-ся 1) окисление и 2) сплавление со щелочными металлами—натрием или калием. [c.211]

    Количественный анализ. Тонкослойную хроматографию используют для количественного анализа ряда органических и минеральных веш,еств. Метод позволяет быстро установить примерный состав смеси веществ, которые обычными методами аналитической химии определяют с большим трудом. Точность определения колеблется в пределах 2—15%. [c.139]

    Метод определения бромных или йодных чисел имеет целью определение в масле непредельных примесей и основан на присоединении галоидов по месту двойной связи, присутствие которой вместе с тем характеризует неполноту очистки. Метод заимствован из аналитической химии высыхающих масел и известен в многочисленных вариантах. Для исследования минеральных масел он был предложен впервые Креем. [c.290]

    Особым разделом аналитической химии является качественный фазовый анализ — разделение и идентификация отдельных фаз гетерогенной системы. Объектами исследования в фазовом анализе являются металлы, сплавы, минералы, руды. С помощью фазового анализа определяют состав неметаллических включений в металлах (оксидов, сульфидов, нитридов, карбидов), изучают распределение легирующих элементов в многофазных сплавах. Минералы в большинстве случаев содержат различные примеси в форме включений и в то же время минералы являются фазовыми составляющими руд как гетерофазных систем. Для разработки рационального технологического процесса отделения ценных компонентов руды от пустой породы и дальнейшей переработки концентрата необходимо знать минеральный состав руды. [c.449]

    ПИРИДИН С. НэК — шестичленный гетероцикл с одним атомом азота, бесцветная жидкость с резким неприятным запахом, т, кип. 115,58° С смешивается с водой и органическими растворителями. П.— слабое основание, дает соли с минеральными кислотами, легко образует двойные соли и комплексные соединения. Получают П. из каменноугольной смолы, применяют в синтезе красителей, лекарственных препаратов, инсектицидов в аналитической химии как растворитель многих органических и неорганических веществ, для денатурации спирта. П. токсичен, действует на нервную систему, кожу. Максимально допустимая концентрация в воздухе 0,005 мг/л. [c.190]


    Метод может быть реализован в варианте прямой кондукто-метрии или кондуктометрического титрования. Прямую кондук-тометрию используют для определения концентрации растворов сравнительно редко, поскольку регистрируемый аналитический сигнал не избирателен электропроводность раствора — величина аддитивная, определяемая наличием всех ионов в растворе. Прямые кондуктометрические измерения успешно используют, например, для оценки чистоты растворителя, определения общего солевого состава морских, речных и минеральных вод, а также для определения таких важных для аналитической химии величин, как константы диссоциации электролитов, состав и константы устойчивости комплексных соединений, растворимости малорастворимых электролитов. [c.104]

    Хлорная кислота принадлежит к числу наиболее сильных минеральных кислот. Она представляет собой весьма эффективный окислитель. Хлорная кислота используется для окисления органических и неорганических соед(инений, -при обработке руд, в аналитической химии, гальванопластике, для получения перхлоратов и в других областях. [c.190]

    Практическое применение амперометрическое титрование находит в самых различных областях аналитической химии в анализе минерального сырья и продуктов его переработки, природных вод и промышленных растворов, в анализе почв (определение микроэлементов), фармацевтических препаратов и различных органи ческих соединений и т, д. Иногда встречаются определенные труд  [c.25]

    В последние годы большой интерес вызывают динамические электрохимические процессы, протекающие на поверхности раздела жидкость/жидкость, поскольку они открывают перед электро-аналитической химией новые возможности. В частности, использование явления переноса ионов через границу раздела двух несмешивающихся жидкостей, например вода/нитробензол, позволяет определять вещества, которые не могут обмениваться электронами с электродом. При этом поверхность раздела жидкость/жидкость по своим свойствам во многих отношениях подобна границе раздела металлический электрод/раствор электролита, хотя механизм отклика здесь иной. С помощью таких электродов можно определять ионы щелочных и щелочноземельных металлов, анионы минеральных кислот, антибиотики, лекарственные вещества, некоторые виды микроорганизмов. [c.408]

    Экстракцией из разбавленных растворов минеральных кислот (0,1—0,5 М) ртуть можно отделить от остальных элементов. Ионы Hg2 с дитизоном в кислой среде образуют оранжево-желтый одно-замеш енный дитизонат Hg2(HD2)2, в щелочной среде — фиолетовый двузамещенный дитизонат, который практически не растворяется в воде и в органических растворителях. Эти соединения широкого применения в аналитической химии не нашли [119]. [c.52]

    Больщинство инструментальных методов исследования, используемых в атомной и молекулярной физике, аналитической химии и других смежных областях наук, позволяют получить информацию о составе и строении угольного вещества. Сложность угля как объекта исследования обусловлена его гетерогенностью на всех уровнях изучения строения вещества атомно-молекулярном (размеры порядка 0,1 —100 нм), микроскопическом (10—10 нм) и макроскопическом (10" нм). Причиной гетерогенности является отсутствие упорядоченности строения органической массы угля, состоящей из углеводородных и гетероатомных фрагментов, наличие в угольном веществе пор различных размеров, полых либо заполненных водой или органическим веществом, наконец, присутствие различных минеральных включений. В связи с этим для получения корректных представлений о структуре и свойствах исходного угольного вещества, о процессах с его участием, о составе твердых, жидких и газообразных продуктов, образующихся в результате этих процессов, необходимо использовать совокупность различных физических, химических и физико-химических методов. [c.64]

    Помимо этого, в учебник введена глава, посвященная применению ЭВМ в аналитической химии, а также глава по радиометрическому анализу минеральных удобрений. [c.4]

    В последние десятилетия в связи с расширением производства и применения синтетических пестицидов и гербицидов, микроудобрений и комплексных минеральных удобрений перед аналитической химией возникла необходимость определения микрокомпонентов в почвах, растениях, водах. Пестициды загрязняют окружающую среду. Пищевые продукты, получаемые из обработанных ими растений, могут содержать опасные для здоровья количества токсичных соединений. Успешное решение вопросов гигиены и токсикологии пестицидов и гербицидов возможно только при наличии высокочувствительных и [c.6]

    Крупные работы в области анализа минерального сырья и аналитической химии редких элементов были проведены В.И. Вернадским, [c.9]


    Экстракция органическими растворителями известна в аналитической химии с прошлого столетия. Однако до конца 40-х гг. текущего столетия экстракция практически применялась лишь в двух случаях для определения брома и иода при анализе минеральных вод, а также для отделения железа в виде хлоридного или роданидного комплексов. В настоящее время экстракция щироко применяется в различных областях химического анализа, а также в технологии, особенно для разделения редких и радиоактивных элементов. Разработаны методы экстракции для всех элементов. [c.44]

    Работы аналитического отдела ордена Ленина и ордена Октябрьской Революции Института геохимии и аналитической химии им. В. И. Вернадского Академии наук СССР развивались и развиваются в содружестве с лабораториями геохимического отдела этого же института. Это предопределило традиционное внимание к исследованию и определению минеральных, неорганических компонентов. Наряду с этим планы отдела четко реагируют на актуальные запросы анализа материалов атомной энергетики, жаропрочных сплавов, веществ высокой чистоты, благородных металлов, объектов окружающей среды. [c.5]

    Дан обзор теоретических работ аналитического отдела Института геохимии и аналитической химии им. В. И. Вернадского АН СССР, которые легли в основу разрабатываемых в институте конкретных методик определения нормируемых минеральных и органических компонентов в природных и сточных водах. [c.190]

    Обычным приемом при исследовании равновесий в растворах является применение фоновых электролитов, таких, как перхлорат натрия, для поддержания постоянной ионной силы (см. разд. 1.5), а также растворов минеральных кислот или щелочей, позволяющих регулировать равновесия. Эти реагенты практически не поглощают в обычно используемой при исследовании равновесий области спектра от 200 до 800 нм. Эта область спектра соответствует рабочему диапазону большинства современных спектрофотометров, работающих в УФ- и видимой области. Основная часть равновесий в растворах, представляющих интерес для аналитической или неорганической химии, включает системы металл — лиганд в данной области спектра такие системы имеют интенсивное и характеристическое поглощение. [c.31]

    Положил начало систематическим работам в аналитической химии. Проводил ана.аизы руд, минералов, вод, образцов ночв. Разрабатывал методику химического анализа. Получил и исследовал муравьиную кислоту. Наблюдал увеличение массы металла при обжиге, однако не смог дать этому факту удовлетворительного объяснения. Содействовал развитию в Швеции горного дела и других промыслов. Его исследоваиия сно-собствовали открытию в стране новых полезных ископаемых и минеральных источников. Издал (1712) первый в Швеции учебник химии. [c.206]

    Основные научные исследования относятся к неорганической и аналитической химии редких элементов и химии их комплексных соединений. Активный участник освоения минеральных богатств СССР. Возглавлял экспедиции по исследованию соляных месторождений Западного Казахстана и Прикаспийской низменности (1936—1938), а также Средней Азии (1942— [c.441]

    Выше же всех других должны быть поставлены третий и четвертый способы. При третьем способе занятия профессора органической и неорганической химии будут итти в уровень с занятиями других профессоров. При четвертом способе преподаватель органической химии будет стоять наравне с преподавателем минеральной химии, аналитическая же химия, соединенная с практическими занятиями в лаборатории и представляющая важнейшую отрасль химии для Технологического института, будет предметом занятий профессора, [c.318]

    Выше же всех других должны быть поставлены третий, четвертый и шестой способы. При третьем способе занятия профессора органической и неоргат1ческой химш будут итти в уровень с занятиями других профессоров. При четвертом способе преподаватель органической химии будет стоять наравне с преподавателем минеральной химии, аналитическая же химия, соединенная с практическими занятиями в лаборатории н представляющая важнейшую отрасль химии для Технологического института, будет предметом занятий профессора, который будет обременен, по мнению Комиссии в степени очень близкой к другим профессорам. При шесгой комбинации занятия каждого ИТ профессоров будут одинаковы между собою и с занятиями других профессоров, а потому порядок, в каком стоят все эти комбинации, есть следующий 6,- 4, 3, 2, 1 и 5. [c.324]

    При работе в области препаративной органической химии экспериментатор должен учитывать некоторые основные положения, от которых зависит методика синтеза. В особенности важно иметь в виду характерные отличия органических веществ и реакций органической химии от минеральных веществ и реакций неорганической и аналитической химии. [c.5]

    Прямая кондуктометрия позволяет решать миогие практические задачи аналитической химии. Она применяется для контроля технологических процессов, для определения концецтрации солевых растворов с помощью солемеров, для контроля очистки воды, для контроля качества дистиллированной воды, сточных вод, для определения содержания солей в минеральной, морской и речной воде, для контроля операций промывки осадков и регенерации ионитов, для контроля качества пищевых продуктов. [c.89]

    Аналитическая химия природных минеральных объектов в настоящее время переживает период интенсивного развития. Пересматриваются и совершенствуются прежние химические методы анализа в целях повышения их скорости, чувствительности и точности. В практику широко внедряются физико-химические инструментальные методы, такие, как спектрофотометрические с применением органических и в меньшей степени неорганических реагентов, фотометрия плахмени, атомно-абсорбционная спек-трофотометрия и другие. [c.5]

    А.— важнейший продукт химической промышленности. Реагирует с минеральными кислотами и образует соли СвН Ы+НзХ- применяемые в текстильной промышленности. С органическими кислотами А. образует анилиды — полупродукты производства красителей. При окислении А. образуется стойкий краситель — анилиновый черный при гидрировании — циклогексиламин H lNH2. из которого получают капролактам. А. применяют для получения проявителей, ускорителей вулканизации каучука, фармацевтических препаратов, различных анилиновых и азокрасителей, в аналитической химии и др. А. ядовит. [c.27]

    Первые работы обобщающего характера, специально посвященные аналитической химии, появились значительно позже. В 1790 г. опубликована первая книга по аналитической химии — Полная химическая пробирная палата , написанная немецким химиком И. Ф. А. Геттлингом (1753—1809). Несколько позже в России появились работы В. М. Север-гина (1765—1826) — в 1796 г. Руководство к испытанию минеральных вод , в 1800 г. — Способы испытывать чистоту и неподоюжность химических произведений лекарственных , в 1801 г. — Проб1фное искусство или руководство к химическому испытанию металлических руд и других ископаемых тел . [c.33]

    РУБИДИЙ (Rubidium, название от характерных линий спектра, лат. rubidus — темно-красный) Rb — химический элемент I группы 5-го периода периодической системы элементов Д. И. Менделеева, п. н. 37, ат. м. 85,4678. Природный Р. состоит из двух изотопов, один из которых радиоактивен. Известны 16 искусственных радиоактивных изотонон. Р. открыт в 1861 г. Р. Бунзеном и Г. Кирхгофом спектральным анализом минеральных вод. Получают Р. вместе с цезием из карналлита и лепидолита. Самостоятельных минералов не имеет. Р.— мягкий серебристо-белый металл, химически активен, самовоспламеняется на воздухе, с водой и кислотами взаимодействует со взрывом. В соединениях Р. одновалентен. Среди солей Р. важнейшие галогениды, сульфат, карбонат и некоторые др. Р. применяют для изготовления фотоэлементов, газосветных трубок, сплавов, в которых Р. является газопоглотителем, для удаления следов воздуха из вакуумных ламп соединения Р. применяют в медицине, в аналитической химии и др. [c.216]

    Пробирный анализ сыграл важную роль в развитии технической и аналитической химии. В 1637 г. в Стокгольме была создана Королевская химическая лаборатория , в которой шведский химик и металлург Урбан Иерне (1641—1724) проводил анализы минералов и сплавов. Ученый стремился своими работами помочь развитию в Швеции горного дела и других промыслов. Результатом его исследований было открытие новых полезных ископаемых и минеральных источников. [c.24]

    XVIII век дал много классических образцов количественного и качественного ана.лиза. Например, А. С. Маргграф посвятил свои основные труды развитию аналитической химии. Ему принадлежат многие анализы минералов и солей. Он предложил применять раствор желтой кровяной соли для обнаружения железа. По окрашиванию пламени он различал соли калпя и натрия. А. Маргграф установил различие между растительной (КОН) и минеральной (NaOH) щелочами и впервые использовал их для изучения силикатов. Оп одним из первых применил микроскоп в химических исследованиях. [c.60]

    В 1801 г. издан труд немецкого исс.тедовагеля В. А. Лампадиуса — Руководство по химическому анализу минеральных веществ . В 1821 г. в Германии опубликовано полное по тем временам руководство по аналитической химии — книга К. Пфаффа (1773—1852) Руководство по аналитической химии для химиков, государственных врачей, аптекарей, сельских хозяев и рудознатцев . С тех пор общие руководства по аналитической химии стали публиковаться систематически, особенно — в Германии. Это — получившие больш ю известность книги Руководство по аналитической химии (1829) Г. Розе (1795—1864), Руководство по качественному химическому анализу (1841) и Введение в количественный анализ (1846) К. Р. Фрезениуса (1818—1897), первое руководство по титриметрическому анализу К. Г. Шварца (1824— 1890) — О количественном анализе (1850), Учебник химико-аналитических методов титрования (ч. 1, 1855 г. ч. 2, 1856 г.) Ф. Мора (1806—1879), Научные основы аналитической химии (1894 ) В. Оствальда (1853—1932) и др. [c.33]

    В аналитической химии эластомеров для определения состава резинового материала применяется метод термогравиметрии. На рис. 20.13 приведена термогравиметрическая кривая для модельной резиновой смеси, по которой установлено наличие в составе смеси 9% мягчителя (минерального масла), 43% ЭПДК, 46% неорганического остатка (наполнителя), 2% карбонизированного продукта (технического углерода). Но вывод о типе сшивающей системы можно сделать после дополнительного хроматографического анализа. [c.595]

    В первые десятилетия XIX в. в условиях химико-аналити-ческого периода развития химии быстро совершенствовались методы качественного анализа. С начала XIX в. появились многочисленные руководства по аналитической химии, содержащие описание не только приемов и методов анализа отдельных соеди-нений но и систематического хода анализа солей, руд и минералов. Среди таких руководств были книги В. А. Лампадиуса (1772—1842) Руководство к химическому анализу минеральных тел (1801) и Г. Розе Руководство по аналитической химии . Широкое распространение в середине и во второй половине XIX в. получило руководство К. Фрезениуса Руководство к [c.112]

    На кафедре аналитической химии МХТИ им. Д. И. Менделеева разработаны методы кислотно-основного титрования в среде спиртов, кето-нов и нитрилов. Эти методы позволяют количественно определять многие MOHO- и дикарбоноБые кислоты, их галоген-, нитро- и оксипроизводные, фенолы и их производные, а также смеси карбоновых кислот друг с другом, с фенолами и минеральными кислотами амины, диамины и их производные, гетероциклические азотсодержащие соединения и их смеси, кремнийорганические соединения, а также мономерные и полимерные продукты. [c.157]

    В числе первых классических руководств по химическому анализу можно назвать работы академика В.М. Севергина "Руководство к испытанию минеральных вод" (1796), "Способы испытывать чистоту и неподложность химических произведений лекарственных (1800) и "Пробирное искусство или руководство к химическому испытанию металлических руд и других ископаемых тел" (1801). Работы В.М. Севергина способствовали развитию аналитической химии в России. [c.8]

    Экстракция кислот широко применяется в аналитической химии, радиохимии, в химической и ядерной технологии. Наибольший интерес представляет извлечение комплексных кислот, анионами которых являются ацидо-комплексы экстрагируемых элементов. Такие соединения образуются, например, при экстракции кислородсодержащими растворителями тантала из фторидных растворов, золота и индия из бромидиых, железа, галлия, таллия, сурьмы или протактиния из хлоридных. За последнее время больше внимания стали уделять также экстракции обычных минеральных кислот — соляной, фосфорной и др. [c.238]

    Основные научные работы относятся к неорганической и аналитической химии. Открыл (1789) уран и цирконий. Выделил (1795) из минерала рутила окисел нового металла, который назвал титаном установил (1797), что титан и обнаруженный (1791) У. Грегором металл менаканит идентичны. Независимо от Я. Я. Берцелиуса и шведского химика В Г. Гизин-гера открыл (1803) церий. Получил новые данные о соединениях стронция (1793), хрома (1797), теллура (1798). Исследовал процессы горения и обжига металлов, в результате чего стал сторонником кислородной теории Лавуазье. Повторил (1792) на заседании Берлинской АН главнейшие опыты Лавуазье, чем способствовал признанию его воззрений в Германии. Установил, что в железных метеоритах постоянным спутником железа является никель. Изучая лейциты, обнаружил, что они содержат калий тем самым показал впервые, что калий встречается не только в растениях, но и в минералах. Открыл (1798) явление полиморфизма, установив, что минералы кальцит и арагонит имеют одинаковый химический состав — СаСОз. Работы Клапрота были изданы под общим названием К химическому познанию минеральных тел (т. 1—5, 1795-1810). [c.238]


Библиография для Химия аналитическая минеральная: [c.237]    [c.222]    [c.186]    [c.224]   
Смотреть страницы где упоминается термин Химия аналитическая минеральная: [c.95]    [c.317]    [c.319]    [c.51]    [c.542]   
История химии (1975) -- [ c.110 ]

История химии (1966) -- [ c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Аналитическая химия



© 2025 chem21.info Реклама на сайте