Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Основы теории массообменных процессов

    ОСНОВЫ ТЕОРИИ МАССООБМЕННЫХ ПРОЦЕССОВ [c.49]

    В термодинамической теории массообменных процессов разделения при переходе от составов фаз в одном межтарелочном отделении к составам фаз в соседнем за количественную основу принимается гипотеза теоретической тарелки ступени). Особенность этой теории состоит в том, что она не занимается вопросом о механизме процесса и не исследует диффузионной природы и кинетической картины явления массопередачи на контактной ступени. Теория массообменных процессов разделения, основанная на концепции теоретической тарелки (ступени), изучает предельные условия проведения процесса и устанавливает эталоны, сравнением с которыми можно получить правильное суждение [c.122]


    Постановка задачи о расчете и моделировании ионообменного реактора приводит к сложным математическим зависимостям, которые, как правило, являются трудноразрешимыми даже при использовании ЭВМ. Поэтому в настоящее время остается весьма актуальной задача по разработке таких инженерных методов расчета ионообменной аппаратуры, которые позволили бы получить надежные результаты при сравнительно малых затратах. Применяемые в настоящее время равновесные теории, использующие такие понятия, как теоретическая тарелка и высота единицы переноса, не отражают основных физико-химических особенностей процесса ионного обмена. В лучшем случае они демонстрируют лишь принципиальную возможность приближенного расчета ионообменных реакторов с использованием основных положений теории массообменных процессов. Между тем известно, что надежное математическое описание, анализ и расчет подобного рода процессов и аппаратов могут быть осуществлены только на основе неравновесных теорий, учитывающих кинетические закономерности процесса. [c.95]

    В третьем разделе даны основы теории и расчета массообменных аппаратов, в которых в основном происходят диффузионные процессы. Кратко изложены теория сушки, методика расчета сушильных устройств и даны примеры расчетов воздушной и газовой сушилок. Приведены основные зависимости для расчета процесса ректификации и пример расчета ректификационных колонн тарельчатого н насадочного типов. Кратко описаны закономерности процесса, методика и пример расчета абсорбционной колонны. Изложены основы расчета экстракторов для жидкостей и твердых тел. [c.4]

    Теория подобия широко применяется при исследовании механических, гидравлических, тепло- и массообменных процессов. На основе такого комплексного (теоретического и опытного) исследования работы аппарата можно получить обобщенные математические зависимости для расчета подобных процессов и аппаратов. Эти же зависимости, раскрывающие физическую сущность процесса, указывают также нередко пути интенсификации процесса и создания более совершенного оборудования. [c.16]

    В третьем разделе даны основы теории и расчета массообменных аппаратов, в которых в основном происходят диффузионные процессы. Здесь кратко освещены вопросы теории сушки, изложена методика [c.3]


    Детальный разбор пленочной теории в данном разделе обусловлен той важной исторической ролью, которую сыграла эта теория в развитии методов математического описания массообменных процессов. В разделах 20.6 и 20.7 обсуждены две другие, более совершенные модели конвективной массопередачи и на их основе вычислены более точные значения поправочных множителей ф, Д и 0. [c.600]

    В предыдущих параграфах были изложены элементарные положения учения о межфазовом массообмене. Это учение должно было бы лечь в основу кинетической теории диффузионных процессов разделения. [c.84]

    Тепло - и массообмен в ЦПА. Имеются подробные сведения [42—47] об исследовании в различных моделях ЦПА процессов теплопередачи, абсорбции и десорбции хорошо растворимых газов и пылеулавливания приведены соответствующие расчетные формулы, полученные с применением теории подобия, на основе разработанных ранее принципов моделирования пенных аппаратов [178, 232, 307]. [c.257]

    В нашем представлении общая теория печей может быть разработана только на основе определенной схематизации тепловой работы печей, учитывающей только общие черты этой работы, т. е. в известной степени на основе абстрактного представления о работе печей. Практическое значение. общей теории печей заключается в формулировании положений для конструирования печей как существующих в настоящее время, так и могущих возникнуть в будущем в связи с появлением новых технологических процессов. Теоретическими основами общей теории печей является физика (главным образом техническая) и физическая химия. Если будет уместно физику и физическую химию сравнить с корневой системой дерева, то общая теория печей есть ствол, ветви которого можно рассматривать как частные функциональные теории печей конкретного технологического назначения. Подобно термодинамике, механике жидкостей и газов и учению о тепло- и массообмене, общая теория печей есть наука феноменологическая, рассматривающая явления как таковые, не касаясь механизма тех или иных процессов, сущность которых по-настоящему раскрывается при рассмотрении явлений на уровне микромира. Поэтому представления из области микромира привлекаются только в тех случаях, когда иначе нельзя объяснить сущность того или иного процесса. [c.11]

    Второй способ упрощения, являющийся разновидностью первого, состоит в том, что число пространственных координат сокращается до одной. В качестве модели развития процессов переноса в направлении отброшенных координат принимаются эмпирические закономерности. Обычно это критериальные уравнения, позволяющие определить кинетические коэффициенты тепло- и массообмена и легко выразить объемные источники массы и энергии через параметры системы (2.2.1). Численные значения коэффициентов критериальных уравнений определяются на основе обработки экспериментальных данных или данных имитационного моделирования задач, полученных в приближениях пограничного слоя, с привлечением теории размерностей и подобия. Уравнение движения 3) в системе (2.2.1) исключается, а осевая скорость движения среды усредняется по сечению аппарата. Данный метод нашел широкое применение в инженерном подходе к моделированию теплообменных и массообменных аппаратов и представляется нам едва ли не единственным при построении полных математических моделей динамики объектов химической технологии. Его преимущества видятся не только в том, что при принятых посылках относительно просто достигается численная реализация математического описания, в котором учитываются причинно-следственные связи между звеньями и их элементами, но и в том, что открывается возможность формализации процедуры построения открытых математических моделей химико-технологических аппаратов. Эта процедура может быть выполнена в виде следующего обобщенного алгоритма. [c.36]

    Применительно к объекту исследования диссертационной работы -колонным аппаратам с регулярной насадкой - рассмотрено описание основных закономерностей процессов, лежащих в основе работы и принципов конструирования насадочных колонных аппаратов гидродинамики течения газовой и жидкой фаз, межфазного массообмена при контакте как на поверхности, так и в объеме насадочного слоя. Изложены принципы обобщения гидродинамических и массообменных характеристик регулярных насадок с использованием методов теории подобия. [c.5]

    В заключение авторы выражают надежду, что эта книга, в которой систематизированы наиболее строгие теоретические результаты, полученные в области гидромеханики псевдоожиженного слоя,, будет способствовать активному развитию теории тепло-и массообменных, а также химических процессов в псевдоожиженном слое и разработке на ее основе точных методов расчета этих процессов. [c.254]


    В книге обсуждается роль поверхностных сил не только в статике, но и в кинетике. На основе неравновесной термодинамики проводится рассмотрение процессов переноса в тонкопористых телах и тонких пленках жидкостей. В таких системах дальнодействие поверхностных сил приводит к появлению новых кинетических эффектов, таких, например, как капиллярный осмос, обратный осмос и диффу-зиофорез, лежащих в основе ряда технологических процессов. Особенности течения жидкостей в тонких порах и пленках важны для понимания закономерностей фильтрации, капиллярной пропитки и диффузионного извлечения, сушки и многих других массообменных процессов. Совместный анализ процессов тепло- и массопереноса позволил развить теорию термоосмоса, а также теорию термокристаллизационного течения незамерзающих прослоек и пленок воды в промерзших пористых телах. Эта теория дала объяснение известных явлений морозного пучения грунтов и разрушения пористых тел при промораживании. [c.5]

    Книга рассчитана на читателей, специализирующихся в области процессов и аппаратов, и подобна другим монографиям, подготовленным на кафедре процессов и аппаратов Ленинградского технологического института им. Ленсовета Гидромеханические процессы химической технологии (1974 г.) и Массообменные процессы химической технологии (системы с твердой фазой) (1975г.). Во всех этих книгах авторы стремились дать основы теории, методы расчета и рассмотреть важнейшие конструкции химической аппаратуры. [c.7]

    В заключение отметим, что та система физических представлений, которая лежит в основе теории пограничного слоя и рассматривалась нами в применении к динамическому взаимодействию между потоком жидкости и твердым телом (т. е. к процессу внешнего обмена количеством движения), в равной мере охватывает все явления переноса в движущейся жидкости иезависимо от их физической природы. Общая теория пограничного слоя включает в себя наряду с учением о движении жидкости в чистом виде также учение о теплообмене (т. е. о процессе теплового взаимодействия между движущейся жидкостью и ограничивающей ее поверхностью) и массообмене (процессе обмена веществом). Все эти направления вполне аналогичны и по исходным идеям, и по постановке задачи, и по методам ее решения. Позднее мы подробно рассмотрим относящиеся сюда соображения. Пока ограничимся замечанием, что в зависимости от физической природы процесса надо различать динамический, тепловой и диффузионный пограничные слои. [c.26]

    Жидкости и газы, насыщающие нефтегазоконденсатные пласты, представляют собой смеси углеводородных, а также неуглеводородных компонентов, некоторые из которых способны растворяться в углеводородных смесях. При определенных режимах разработки нефтяных и нефтегазоконденсатных месторождений в пласте возникает многофазное течение сложной многокомпонентной смеси, при котором между движущимися с различными скоростями фазами осуществляется интенсивный массообмен. Переход отдельных компонентов из одной фазы в другую влечет за собой изменение составов и физических свойств фильтрующихся фаз. Такие процессы происходят, например, при движении газированной нефти и вытеснении ее водой или газом, при разработке месторождений сложного комйонентногс ( ава (в частности, с большим содержанием неуглеводородных компонентов), при вытеснении нефти оторочками активной примеси (полимерными, щелочными и мицеллярными растворами различными жидкими и газообразными растворителями). Основой для расчета таких процессов служит теория многофазной многокомпонентной фильтрации, интенсивно развивающаяся в последние годы. Вместе с тем заметим, что область ее применения шире, чем здесь указано, и эта теория имеет важное общенаучное значение. [c.252]

    Во многих промышленных процессах, зависящих от массообмена, имеют дело с одним или с несколькими потоками жидкости, движущимися турбулентно. В то же время существующая теория турбулентности совершенно недостаточна для того, чтобы служить фундаментом для разработки практически полезной теории переноса массы на межфазной границе. Трудности описания турбулентности представляют собой главный камень преткновения в создании теоретической основы массопередачи между фазами. Дж. Бэтчелор, известный авторитет в области механики жидкостей и газов, еще в 1957 г. писал, что современная технология нуждается в помощи при описании и анализе турбулентных течений и она не может ждать, пока ученые поймут тайны турбулентности [2]. Вероятно, подобная ситуация сохраняется и сейчас. Вследствие этого существующие корреляции данных, относящихся к скоростям переноса, по необходимости являются в значительной мере эмпирическими. Они оказываются исключительно полезными при проектировании технологического оборудования, хотя требуемые для этого сведения и корреляции очень часто отсутствуют или позволяют лишь приблизительно оценить размеры массообменных аппаратов и режимы их работы. Тем не менее инженер-конструктор должен применять имеющиеся средства в тесных рамках как ограничений по равновесиям, так и экономики. [c.15]


Библиография для Основы теории массообменных процессов: [c.209]   
Смотреть страницы где упоминается термин Основы теории массообменных процессов: [c.209]    [c.210]    [c.8]    [c.71]    [c.121]    [c.184]    [c.231]    [c.133]    [c.520]    [c.5]   
Смотреть главы в:

Физические методы переработки и использование газа -> Основы теории массообменных процессов

Процессы и аппараты химической промышленности -> Основы теории массообменных процессов

Процессы и аппараты химической промышленности Издание 2 -> Основы теории массообменных процессов




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Основы процессов

Теория массообмена



© 2025 chem21.info Реклама на сайте