Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аспарагиновая биосинтез

    По хим. св-вам А,-типичная алифатич. о.-аминокислота. L-A.-кодируемая аминокислота, встречается во всех организмах в своб. виде и в составе белков. D-A. обнаружен только в бактериях и в опиоидных пептидах, выделенных из кожи южноамериканских лягушек. Биосинтез L-A. происходит в результате аминирования и переаминирования пировиноградной к-ты или -декарбоксилирования аспарагиновой к-ты. [c.81]

    В клетках микроорганизмов лизин синтезируется из аспарагиновой кислоты и служит конечным продуктом разветвленного метаболического пути биосинтеза, общего для трех аминокислот — лизина, метионина и треонина (рис. 3.3). [c.44]


    Как видно из рис. 24, регуляция ферментов биосинтеза аминокислот семейства аспарагиновой кислоты идет как путем ингибирования конечными продуктами, так и при действии механизмов репрессии. [c.51]

    К семейству аспарагиновой кислоты относится также очень важная в промышленном отношении аминокислота - лизин. Существует 2 пути биосинтеза лизина  [c.128]

    Исключительно важная роль амидов — аспарагина и глутамина была установлена благодаря классическим исследованиям Д. Н. Прянишникова. Он показал, что амиды являются теми соединениями, в виде которых обезвреживается избыток аммиака, поступающего в растения или образующегося при распаде белков в то же время они являются резервом дикарбоновых аминокислот, необходимых для реакций переаминирования. В последнее время благодаря главным образом исследованиям В. Л. Кретовича была вскрыта еще одна сторона физиологической роли аспарагина и глутамина они предохраняют от окислительного дезаминирования аспарагиновую и глутаминовую кислоты. Оказалось, что окислительному дезаминированию легче всего подвергаются именно аспарагиновая п глутаминовая кислоты. При биосинтезе амидов происходит включение [c.256]

    При анализе меченых пиримидиновых колец выяснилось, что N-3 возникает из аммиака, С-2 — из СОг, а С-4, С-5 и N-1 — из аспарагиновой кислоты. В опытах с возможными предшественниками пиримидина, содержащими изотопы, было установлено также, что путь биосинтеза пиримидинов проходит через уреидо-янтарную (карбамоил-аспарагиновая) и оротовую (урацил-6-кар-боновая) кислоты [15, 49—51]. Этот механизм был детально изучен на бесклеточных системах, выделенных из печени или из бактерий. [c.178]

    H. H(NH0 OOH,Kpu T. [а] -Ь 34,5 (конц. 2 г в 100 мл 6 и. НС1) рК для а-СООН и NH2 соотв. 2,02 н 8,8 плохо раств. в сп., эф., раств. в к-тах и р-рах щелочей. Входит 1) состав белков. Гидролизуется до аспарагиновой к-Т1)[, из нее же осуществляется биосинтез А. [c.57]

    РИС. 14-6. Некоторые реакции биосинтеза аспарагиновой кислоты знаком минуо в кружочке обозначено ингибирование, знаком минус в квадрате — репрессия (по типу [c.105]

    Пути биосинтеза конкретных аминокислот различаются деталями схемы и природой исходной окси- или оксокислоты. По этому последнему фактору аминокислоты подразделяются на аминокислоты, происходящие из пировиноградной кислоты — лейцин, изолейцин, валин, лизин, аланин аминокислоты, происходящие из щавелевоуксусной кислоты — аспарагиновая кислота, аспарагин, треонин, метионин аминокислоты, происходящие из 2-оксоглу-таровой кислоты —аргинин, пролин, глутаминовая кислота, глутамин аминокислоты, происходящие из продуктов [c.80]


    Переаминирование сводится к взаимопревращению аминогрупп и карбонильных групп под действием ферментов трансаминаз, называемых также аминотрансферазами. Эта реакция служит не только для разрушения аминокислот, но и для их биосинтеза. Так, например, аспартат-а-кетоглутарат-трансаминаза катализирует взаимопревращение аспарагиновой и а-кето-глутаровой кислот в щавелевоуксусную и глутамиЕювую кислоты. Механизм реакции этого типа был описан в гл. 17. [c.397]

    Биосинтез Л. из аспарагиновой и пировиноградной к-т через 2,6-диаминопимелиновую к-ту (декарбосили-рование к-рой приводит к L-Л.) или из а-аминоадипиновой к-ты последняя образуется также при распаде L-J1. в организме. Получают L-Л. микробиологически или из гидролизатов белков путем осаждения в виде пикрата. Синтетически Л. получают аминированием а-галогенкапро-лактама. В спектре ПМР L-Л. в D O хим. сдвиги (в м. д.) 3,762 (а-Н), 1,91 ( -H), 1,393 (у-Н), 1,732 (5-Н), 2,649 (е-Н). [c.592]

    Биосинтез X. а. вдет через антраниловую к-ту. При образовании алкаловдов типа IV вторым предшественником является орнитин или аспарагиновая к-та. Большинство X. а. синтезировано, X. а. обладают широким спектром фармакологич. действия антихолинэстеразным, противомалярийным, желчегонным, бронходиляторным и др. Нек-рые алкаловды и ок. 50 синтетических производных нашли применение в медицине. [c.264]

    На рис. 7-1 показано еще несколько биосинтетических путей. Например, пируват легко превращается в аминокислоту аланин, а щавелевоуксусная кислота — в аспарагиновую кислоту последняя в свою очередь может превращаться в пиримидины. Другие аминокислоты, пурины и прочие соединения, необходимые для построения клеток, образуются в л1етаболических путях, большая часть которых берет начало от некоторых соединений, показанных на рис. 7-1, или в какой-либо точке на одном из путей, показанных на этом рисунке. Фактически биосинтез всегда зависит от наличия энергии, высвобождающейся при расщеплении АТР. Во многих случаях требуется также один из переносчиков водорода в восстановленной форме. [c.87]

    Исключением является также биосинтез мимозина (114) для него имеются данные о возможности его происхождения из лизина [116] (боковая цепь, по-видимому, формггруется из аланина). Рицинин (115), очевидно, образуется из никотиновой кислоты (34) (и ее предшественников — глицерина и аспарагиновой кислоты), а также из промежуточных соединений метаболического цикла пиридиновых нуклеотидов [117]. Подтверждением связи биосинтеза рицинина с этим циклом служит факт снижения эффективности включения [6- С] хинолиновой кислоты (41) в алкалоид под влиянием ингибиторов ЫАО-синтетазы [118]. [c.568]

    Мутагенные факторы могут изменить нормальный биосинтез аминокислот в клетке, воздействуя на генетический аппарат. Если в результате облучения или воздействия химических факторов ДНК не дает информацию для синтеза фермента и в клетке не синтезируется, например фермент гомосериндегидроге-наза, катализирующий превращение полуальдегида аспарагиновой кислоты в гомосерин, то клетка может синтезировать необходимые для своего существования белки только в том случае, если в питательной среде уже содержится готовый гомосерин. Так как аспарагиновая кислота является исходным пунктом биосинтеза не только гомосерина, но и треонина, изолейцина, метионина, а также лизина, то отсутствие упомянутого фермента влияет на биосинтез всех этих аминокислот. Прекращение биосинтеза гомосерина одновременно прекращает биосинтез треонина, изолейцина и метионина, поэтому эти аминокислоты также должны содержаться в среде роста данной культуры. В данных условиях весь ход биосинтеза аминокислот в клетке идет в направлении от аспарагиновой кислоты к лизину. [c.158]

    Аспарагиновая кислота принимает непосредственное участие в орни-типовом цикле мочевинообразования, в реакциях трансаминирования и биосинтезе углеводов (гликогенная аминокислота), карнозина и ансерина, пуриновых и пиримидиновых нуклеотидов (см. главу 14), а также в синтезе М-ацетиласпарагиновой кислоты в ткани мозга. Роль последней, содержащейся в довольно высоких концентрациях в ткани мозга млекопитающих, пока не выяснена. [c.460]

    В ферментативном синтезе АМФ из ИМФ специфическое участие принимает аспарагиновая кислота, являющаяся донором КН,-группы, и ГТФ в качестве источника энергии промежуточным продуктом реакции является аденилоянтарная кислота. Биосинтез ГМФ, напротив, начинается с дегидрогеназной реакции ИМФ с образованием ксантозиловой кислоты в аминировании последней используется только амидный азот глутамина. [c.473]

    На одной из стадий биосинтеза аспарагиновой кислоты, НООССН2 H(NH2) 00H, пировиноградная кислота в виде пирувил-КоА карбоксилируется в щавелевоуксусную кислоту при каталитическом участии пируваткарбоксилазы [118, 119] [c.455]

    Больщинство прокариот способны синтезировать все аминокислоты, входящие в состав клеточных белков. В качестве исходных углеродных скелетов для биосинтеза аминокислот служит небольшое число промежуточных соединений различных метаболических путей (табл. 10). Введение в молекулу некоторых из них (щавелевоуксусной, а-кетоглутаровой, пировинофадной кислот) аминного азота приводит к образованию аспарагиновой, глутаминовой кислот и аланина. Однако в больщинстве случаев исходные соединения должны подвергнуться значительным перестройкам, чтобы сформировать углеродный остов молекулы будущей аминокислоты. [c.88]


    Аспарагиновая кислота 1фи биосинтезе лизина образуется у глутаматсинте-зирующих бактерий за счет реакции переаминирования, которая осуществляется между щавелевоуксусной и глутаминовой кислотами. [c.27]

    Нуклеиновые кислоты - белки. Эта взаимосвязь выражается прежде всего в том, что новообразование как нуклеозидтрифосфатов, так и самих нуклеиновых кислот зависит от наличия в клетке соответствующего набора белков-ферментов (ДНК- и РНК-полимераз, лигаз, топои-зомераз, а также ферментов биосинтеза пуриновых и пиримидиновых циклов). Кроме того, аминокислоты (аспарагиновая - в случае пиримидиновых нуклеотидов и глицин, аспарагиновая кислота и глутамин [c.458]

    В случае 3-нитропропионовой кислоты (гиптагеновая кислота, бовиноцидин) были найдены [9—15] доказательства того, что ее биосинтез из аспарагиновой кислоты проходит через стадию образования р-нитроакриловой кислоты, однако эта проблема полностью все же не решена. [c.190]

    В окисл.-восстановит. р-циях небольшая скорость м. б. обусловлена тем, что числа электронов, отдаваемых одной частицей восстановителя и принимаемых одной частицей окислителя, не совпадают. При этом катализатором м. б. частица, способная чпереключать одноэлектронный механизм р-ции на двухэлектронный (см. Окислительновосстановительный катализ). Большие возможности для Г. к. открываются при использ. в кач-ве катализаторов комплексных соед. переходных металлов (см. Катализ комплексными соединениями). А. Е. Шилов. ГОМОЛИТИЧЕСКИЕ РЕАКЦИИ, происходят в результате разрыва одной или неск. электронных пар, образующих хим. связь, и (или) образования новой связи при взаимод. частиц, каждая из к-рых обладает неспаренным электроном. В Г. р. участвуют или образуются атомы или своб. радикалы. Типичные Г. р. мономолекулярный и бимолекулярный распады молекул с образованием своб. радикалов р-ции отрыва, замещения и присоед. с участием своб. радикалов рекомбинация и диспропорционирование своб. радикалов. К Г. р. часто относят также окисл.-восстановит. р-ции с переносом одного электрона. При Г. р. атомов (радикалов) с молекулами выполняется принцип неуничтожимости своб. валентности. Г. р.— элементарные акты мн. цепных р-ций, вапр. радикальной и анионной полимеризации, хлорирования и нитрования алиф. соединений. L-ГОМОСЕРИН (Ь-а-амино-у-оксимасляная к-та) НОСН2СНгСН(ЫНг)СООН, крист. раств. в воде. Легко образует 7-лактон. Содержится в соке ряда растений, в белки не включается. Предшественник треонина. Биосинтез — последоват. восстановлением группы Э-СООН аспарагиновой к-ты. Получ. галогенированием и послед, аминированием бутиролактона. Образуется из метионина при специфич. расщеплении пептидной цепи белков бромцианом эта р-ция использ. для определения первичной структуры белка. [c.141]

    Многие промежуточные продукты цикла Кребса участвуют в целом ряде синтетических реакций. Так, например, а-кетоглута-ровая кислота является предшественником глутаминовой кислоты и источником углеродного скелета аминокислот группы глутаминовой кислоты (см. стр. 406), щавелевоуксусная килота служит источником углеродного скелета аминокислот группы аспарагиновой кислоты (см. стр. 421), а янтарная кислота — предшественником б-аминолевулиновой кислоты и, следовательно, порфиринов (см. стр. 215). Имеющиеся данные показывают, что реакции цикла Кребса являются основными при синтезе а-кетоглутаровой и янтарной кислот. Однако, как отмечено выше, в результате реакций цикла Кребса каждый моль ацетил-КоА окисляется до 2 моль углекислого газа. Таким образом, в ходе цикла Кребса не может иметь места прирост углерода. Следовательно, если из цикла удалять промежуточные продукты, то уменьшится количество щавелевоуксусной кислоты, доступной для конденсации с ацетил-КоА, и в конце концов цикл нарушится. Таким образом, если цикл Кребса поставляет промежуточные продукты для биосинтезов, должны существовать какие-то механизмы их регенерации. [c.197]

    Исходными веществами для биосинтеза глутамина и аспарагина являются соответственно глутаминовая и аспарагиновая кислоты. Синтез глутамина идет при участии АТФ и катализируется ферментом глутаминсинтетазой, которая широко распространена в тканях растений, грибов, бактерий и животных  [c.242]

    Схемы регуляции при разветвленных путях биосинтеза. Регуляция образования ферментов, участвующих в разветвленных путях биосинтеза, очень сложна. Примерами могут служить системы, синтезирующие семейство ароматических аминокислот , семейство аспарагиновой кислоты и семейство пировиноградной кислоты (см. рис. 7.17). Очевидно, что каждый конечный продукт может репрессировать образование ферментов только специфического пути биосинтеза. Ферменты, находящиеся перед местом разветвления путей, подвержены репрессии всеми конечными продуктами, действующими одновременно (мультива-лентная репрессия). Синтез этих ферментов подавляется лишь тогда, когда в питательной среде присутствуют все конечные продукты если же добавлять их по отдельности, они такого эффекта не оказывают. [c.478]

    Первый этап биосинтеза аминокислот метионина, лизина, треонина и изолейцина ( семейство аспарагиновой кислоты ) катализируют несколько изозимов (рис. 16.13). У Es heri hia oli в реакции [c.492]

Рис. 16.13. Регуляция биосинтеза аминокислот семейства аспарагиновой кислоты у Es heri hia oll. Красными линиями показаны воздействия конечных продуктов, ингибирующие ферментативную реакцию (И) или/и репрессирующие синтез данного фермента (Р). Рис. 16.13. <a href="/info/1567244">Регуляция биосинтеза аминокислот</a> <a href="/info/611364">семейства аспарагиновой кислоты</a> у Es heri hia oll. Красными линиями показаны воздействия <a href="/info/17660">конечных продуктов</a>, ингибирующие <a href="/info/6306">ферментативную реакцию</a> (И) или/и репрессирующие <a href="/info/1567804">синтез данного</a> фермента (Р).
    Аспартат — карбамоилтрансфераза — первый фермент процесса биосинтеза пиримидинов и нуклеотидов из аспарагиновой кислоты. [c.59]


Смотреть страницы где упоминается термин Аспарагиновая биосинтез: [c.79]    [c.141]    [c.300]    [c.361]    [c.209]    [c.209]    [c.70]    [c.171]    [c.605]    [c.165]    [c.408]    [c.225]    [c.376]    [c.121]    [c.832]    [c.57]    [c.57]    [c.300]    [c.64]    [c.255]    [c.48]   
Аминокислоты Пептиды Белки (1985) -- [ c.50 ]

Основы биологической химии (1970) -- [ c.435 ]




ПОИСК





Смотрите так же термины и статьи:

Аспарагиновая



© 2024 chem21.info Реклама на сайте