Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты дикарбоновые.

    Изоэлектрическая точка белков. Молекула белка имеет электрический заряд, обусловленный почти исключительно диссоциацией ионогенных групп —СООН и —КНз. Эти группы принадлежат концевым аминокислотам, т. е. находящимся на концах полипептидных цепочек, а также дикарбоновым и диаминовым аминокислотам, расположенным в середине цепочки. [c.187]

    Единственная химическая реакция, которая здесь будет рассматриваться, —это гидролиз. Он может осуществляться как ферментативным, так и химическим путем. Горячая разбавленная минеральная кислота медленно расщепляет амидные связи с образованием с учайных фрагментов, в конечном итоге приводя к простым аминокислотам. Контролируемый кислотный гидролиз разрушает белок с образованием смеси пептидов. Возможен также ферментативный гидролиз протеолитические ферменты очень разнообразны по своему специфическому действию. Некоторые из них, такие, как папаин или фицин, фактически неспецифичны и расщепляют белки до свободных аминокислот, в то время как другие — трипсин, химотрипсин и пепсин— гидролизуют только особые связи в белковых молекулах (ср. мальтаза, эмульсин и т. д., разд. 17.6 и 17.7). Так, пепсин расщепляет амидную связь между карбоксильной группой ди-карбоновой ь-аминокислоты и аминогруппой ароматической ь-аминокислоты при условии, что вторая карбоксильная кислотная группа дикарбоновой аминокислоты не связана. Химотрипсин менее специфичен и расщепляет амидную связь с карбонильной стороны ароматической ь-аминокислоты. Трипсин гидролизует амидные связи, включающие карбоксильные груп- [c.296]


    Двухосновные аминокислоты (дикарбоновые аминокислоты) [c.677]

    Дикарбоновые аминокислоты. Аспарагиновая и глутаминовая кислоты содержатся не только в белках, но в виде свои.к амидов— глутамина и аспарагина — широко распространены в природе. [c.473]

    Реакция получения полиамидов из аминокислот, а также из диаминов и дикарбоновых кислот протекает с выделением воды и имеет обратимый и равновесный характер. Для смещения равновесия в сторону образования высокомолекулярного продукта выделяющуюся воду удаляют из сферы реакции. [c.80]

    Например, полиамиды можно получить взаимодействием диаминов с дикарбоновыми кислотами [1] или поликонденсацией аминокислот [2 3, с. 45]. [c.156]

    Строение полиамидов. Полиамиды — это высокомолекулярные соединения, содержащие между углеводородными остатками повторяющиеся амидные группы СОЫН. В зависимости от метода получения они разделяются на два основных типа 1) полиамиды, получаемые конденсацией диаминов с дикарбоновыми кислотами, и 2) полиамиды, получаемые конденсацией аминокислот. [c.232]

    Мономерами могут быть соединения, содержащие кратные связи (алкены и алкадиены, ацетиленовые углеводороды, производные ненасыщенных кислот и др.), легко раскрывающиеся циклы (оксиды алкенов, лактамы, лактоны и др.), соединения с разнообразными функциональными группами и подвижными атомами (дикарбоновые кислоты, аминокислоты, альдегиды, гликоли, фенолы, диамины и др.). При этом необходимым условием использования низкомолекулярных соединений в качестве мономеров является их полифункциональность. [c.318]

    Конечными продуктами гидролиза белков являются различные а-аминокислоты, синтетические полиамиды гидролизуются с образованием соответствующих дикарбоновых кислот и диаминов или исходных аминокислот. [c.267]

    Алифатические дикарбоновые (кислые) аминокислоты [c.372]

    КАРБОНОВЫЕ КИСЛОТЫ, орг. соед., содержащие карбоксильную группу СООН. По кол-ву этих групп различают одно-, двух- и многоосновные к-ты (см. также Дикарбоновые кислоты). Могут содержать Hal, а также группы NHj, С=0, ОН (соотв. галогенкарбоновые кислоты, аминокислоты, альдегида- и кетокислоты, оксикислоты). Алифатич. к-ты, у к-рых число атомов С в молекуле больше 6, относят к высшим жирны. кислотам. [c.326]

    Полиамиды — пластмассы на основе синтетических высокомолекулярных соединений, содержащих в основной цепи амидные группы —СОЫН—. П. получают поликонденсацией амидов многоосновных кислот с альдегидами, поликонденсацией высших аминокислот или диаминов с дикарбоновыми кислотами, конденсацией капролактама и солей диаминов дикарбоновых кислот и др. П. применяют в виде волокон типа капрон, найлон, пленок, клеев и покрытий, как антикоррозийные материалы для защиты металлов и бетонов, в медицине (для хирургических швов, в глазной хирургии, для искусственных кровеносных сосудов, как заменители костей), как заменители кожи. [c.103]


    Дикарбоновые а-аминокислоты 1755 -1720 5,70 -5,81 Колебания С = 0 не- [c.249]

    В зависимости от строения радикала К аминокислоты подразделяют на следующие группы (табл. 3.3.1) алифатические аминокислоты, алифатические оксиаминокислоты, серусодержащие аминокислоты, дикарбоновые аминокислоты (аминокислоты кислотного характера), диаминокарбоновые кислоты (аминокислоты основного характера), жирио-ароматические аминокислоты, гетероциклические аминокислоты и ими-покислоты. [c.650]

    Интересной особенностью смешанных полиамидов, получаемых по указанному способу, является правильное чередование остатков а-амино-кислоты, дикарбоновой кислоты или гликоля в звене полиамида. Это приводит к тому, что подобные полиамиды имеют более высокие температуры плавления, чем полиамиды того же состава, полученные обычным путем. Так, полиамид, содержащий в звене остатки лейцина, терефталевой кислоты и гексаметилендиамина, полученный через бмс-оксазолон, плавился при 280—286°, а полиамид того же состава, полученный обычной ноли-конденсацией исходных аминокислоты, дикарбоновой кислоты и диамина, плавился при 200—220°, т. е. почти па 80° ниже [16]. [c.208]

    Используя этот метод Брендстрём смог получить (с выходом до 90%) эфиры даже таких стерически затрудненных кислот, как о,о -диметил- или диметоксизамещенных бензойных кислот. Получение эфиров дикарбоновых кислот в большинстве случаев проходит без каких-либо затруднений. Только очень липофильные кислоты дают низ.кий выход (например, выход эфиров винной кислоты 40%). Однако аминокислоты этим методом этери-фицировать нельзя. В то же время Ы-замещенные аминокислоты легко дают разнообразные эфиры растворяют Ы-производное аминокислоты в насыщенном водном растворе бикарбоната натрия и добавляют смесь молярного количества адогена 464 и небольшого избытка алкилгалогенида. Смесь выдерживают при комнатной температуре в течение 3—24 ч 1225]. [c.128]

    Проведены также исследования по пикосекундному фотохимическому синтезу аминокислот [15]. Объектами служили водные растворы аммонистых солей дикарбоновых кислот и аммонийная соль коричной кислоты. Эксперименты подтверждают возможность синтеза веществ с высоким квантовым выходом и направленностью процесса. [c.190]

    Кислоты и их производные. В случае ациклических моно- и днкарбоновых кислот атом углерода карбоксильной группы, обозначаемой окончанием -овая к-та, включается в главную цепь и получает номер 1. Все поликарбоновые, а также циклические моно- и дикарбоновые кислоты (карбоксильная группа связана непосредственно с кольцом) в названии имеют окончание -карбоновая к-та, причем атом, несущий кислотную функцию, получает минимальный номер. Сохранены следующие тривиальные названия Муравьиная к-та, Уксусная к-та. Щавелевая к-та, Мале новая к-та. Бензойная к-та. Угольная к-та. Все прочие карбоновые кислоты (в том числе окси- и аминокислоты) фигурируют под систематическими названиями. В названия соединений-основ ортокислот, сернистых аналогов карбоновых кислот входят приставки, соответственно, орто-, тио-, дитио-. Ациклические кислоты типа RaN OOH рассматриваются как замещенные карбаминовые кислоты. [c.9]

    Из числа ароматических двухосновных кислот три изомерные фта-левые кислоты при обработке азотистоводородной кислотой превращаются в соответствующие амннобензойные кислоты с небольшой иримесью диамннобензолов [7, 12]. Антраниловая кислота и ее производные, в которых один атом водорода аминогруппы замещен остатком уксусной, бензойной или л-толуиловой кислоты, не реагируют с азотистоводородной кислотой [12]. Таким образом, поведение этих соединений аналогично поведению а-аминокислот и их производных жирного ряда. Следующие кислоты ряда пиридина и хинолина ведут себя так же, как а-аминокислоты, и тоже не вступают в реакцию г1иридин-2-карбоновая кислота, пиридин-2,3-дикарбоновая кислота, [c.297]

    Строгое соблюдение эквивалентного соотношения исходных веществ требуется в процессах, протекающих при взаимодействии двух различных компонентов (второй, третий и пятый методы поликонденсации). Использование аминокислот, лактамов или солей диаминов и дикарбоновых кислот в качестве исходных мономеров позволяет непрерывно сохранять эквимолекулярное соотношение функциональных групп в реакционной смеси. Поэтому широкое практическое применение получили методы ступенчатой полимеризации лактамов, поликонденсация аминокислот и поликонденсация солей диаминов и дикарбоновых кислот. Находит применение также процесс получения полиамидов из дикарбоновых кислот и диизоцианатов. По этому методу можно получить полиме )пый ячеистый материал, представляющий собой совокупность мелких ячеек, заполненных газом и изолированных друг от друга тонкими слоями полимера. Про- [c.439]


    Большинство природных белков содержит значительные количества (25—30%) дикарбоновых аминокислот (глютаминовой и аспарагиновой) и, следовательно, относятся к кислым белкам. Существует и относительно небольшая группа основных белков с преобладанием свободных групп —ЫНз за счет повышенного (до 80%) содержания диаминовых аминокислот (лизина, аргинина, орнитина, цитруллина). Изоэлектрическая точка кислых белков лежит в слабокислой среде, основных — в слабощелочной среде. В табл. 39 приводятся изоэлектрические точки некоторых белков. [c.188]

    Совместной поликонденсацией многоосновных карбоновых кислот с многоатомными спиртами или диаминами, а также совместной поликонденсацней различных оксикислот или аминокислот можно широко варьировать свойства гетероцепных полимерных сложных эфиров и полиамидов. В результате реакций совместной полиэтерификации или полиамидирования, в которых принимают участие различные дикарбоновые кислоты и различные диолы или диамины, изменяется концентрация полярных групп пли регулярность их расположения в макромолекулах полимера, что отражается на его физических и механических свойствах. С понижением концентрации полярных групп в макромолекулах уменьшается количество водородных связей между цепями и, следовательно, снижается температура плавления и твердость полимера, возрастает его упругость и растворимость. Нарушение регулярности чередования метиленовых (или фениленовых) и полярных групп. штрудняет процесс кристаллизации сополимера и снижает степень его кристалличности. Это придает сополимеру большую эластичность, по вызывает уменьшение прочности и теплостойкости изделий из данного полимерного материала. При поликонденсации ш-амино-капроновой кислоты с небольшим постепенно возрастаюш,им количеством АГ-соли (соль гексаметилендиамипа и адипиновой кислоты, или соль 6-6) температура размягчения сополимера плавно снижается. Если в макромолекулах сополимера количество звеньев соли 6-6 достигает 35—50%, температура плавления сополимера снижается до минимума (150° вместо 214—218° для полиами- [c.532]

    АМИНОКИСЛОТЫ — органические (карбоновые) кислоты, содержащие одну или несколько аминогрупп. В зависимости от положения аминогруппы относительно карбоксила различают а-, Р-, 7 йминокислоты и др. Например, СНз—СН (ННз) — СООН — а-аминопро-пионовая и НгЫ—СНз—СНз—СООН — Р-аминопропионовая кислоты. Ио числу карбоксильных групп различают моно-и дикарбоновые кислоты, по числу аминогрупп — моноаминокислоты, диами-нокислсты и т. д. А. широко распространены в природе. В состав белков входят только а-А. Почти все природные А. [c.22]

    Полиамиды принято классифицировать в соответствии с числом атомов углерода в диамине (первая цифра) и дикарбоновой кислоты (вторая цифра). Так, продукт поликондеисации гексаметилендиамина и адипиновой ислоты называется полиамидом 6,6 (найлоном 6,6). Полиамиды, полученные в результате конденсации аминокислот или полимеризации лактамов с раскрытием цикла, обозначают одной цифрой полиамид 6 (найлон 6). [c.71]

    Полиамиды получают поликонденсацией со-аминокислот поликонденсацией диаминов с дикарбоновыми кислотами поликонденсацией диаминов с дихлорангидридами полимеризацией лактамов. Первые две реакции обычно. проводят е расплаве, поли1ко.нденса-цию диаминов с дихлорангидридами проводят либо в растворе, либо на границе раздела фаз. [c.71]

    Большинство природных белков содержит значительные количества (25—30%) дикарбоновых аминокислот (глутаминовой и аспарагиновой) и, следовательно, относятся к кислым белкам. Существует и относительно небольшая группа основных белков с преобладанием свободных групп —NH2 за счет повышенного (до 80%) содержания диампновых аминокислот (лизина, аргинина, орнитина, цитруллина). Изоэлектрическая точка кислых белкон [c.216]

    Синтетические полиамиды [И]. В отличие от синтетических полипептидов-полимеров а-аминокислот — полимеры других аминокислот или дикарбоновые кислот и диаминов принято называть полиамидами. Среди них наибольшее техническое значение имеют поли-е-капроамид, поли- -энантоамид, поли-со-ундекамид, полигексаметиленадипамид и ряд ароматических полиамидов. [c.382]

    О — полимеры на осноае диамина и дикарбоноаой кнслоты, четное число групп СНз — то же, нечетное число групп СНа А—полимеры аминокислот, четное число групп СНа А—то же, нечетное число групп СНз —полимеры на основе диамина и дикарбоновой кнслоты, нечетно — четное и четное — нечетное число групп СНз. [c.383]

    Номенклатура и изомерия. Обычно аминокислоты носят эмпирические названия. По рациональной номенклатуре их названия составляются путем прибавления к названию соответствующей кислоты приставки амино и буквы греческого алфавита, указывающей положение аминогруппы по отношению к карбоксильной группе. По числу аминных и карбоксильных групп, а также в зависимости от радикала К аминокислоты подразделяются на моноаминокарбоновые, диаминокарбоновые, амино-дикарбоновые, ароматические и гетероциклические аминокислоты. [c.231]

    Рассмотрение принципа действия и особенностей использования аминокислотного анализатора начнем с того, что сформулируем представления об анализируемом препарате. Для наиболее интересного случая — анализа состава белка — им является смесь 20 природных аминокислот. Все компоненты этой смеси представляют одинаковый интерес, подлежат полному разделению и количественной оценке. Интервал. молекулярных масс простирается ог 75 (Gly) до 204 (Тгр), диапазон значений р1 — от 2,97 (Glu) до 10,76 (Arg). Различия в стеиени гидрофобности тоже выражены сильно от гидрофильных дикарбоновых и оксикислот до весьма гидрофобных, несущих довольно протял<енные алифатические и ароматические боковые группы. Заметим сразу, что такие различия должны облегчить задачу хроматографического разделенпя, но вряд лн позволят обойтись без ступенчатой смены элюентов. В обычных условиях хроматографии все алшнокислоты достаточно устойчивы, но следует обратить внимание с этой точки зрения и на предшествующий хроматографии этап исчерпывающего гидролиза белков и пептидов (от него будут зависеть и результаты анализа). Агрегация аминокислот маловероятна, за исключением возможности окисления цистеинов до цистинов. Не-специфическая сорбция за счет гидрофобных взаимодействий с материалом матрицы безусловно возможна, но здесь она будет использоваться в интересах фракционирования. [c.515]

    Степень прочности сорбции и десорбции на смоле разных аминокислот, определяемая главным образом величинами зарядов молекул, различна. Наиболее прочно на смоле сорбируются диаминокислоты и наименее прочно — дикарбоновые аминокислоты. Разделение аминокислот при ионообменной хроматографии происходит при десорбции их со смолы элюирующими буферными растворами, отличающимися от исходного буферного раствора большими величинами pH и (или) ионной силы. Обычно для элюции кислых и нейтральных аминокислот используют Ыа-цитратные буферные растворы с pH 3,25 и 4,25. Для десорбции со смолы наиболее прочно связанных (основных) аминокислот используют более щелочной Ыа-цитратный буферный раствор со значением pH 5,28 и более высокой ионной силой (0,35 М). [c.133]

    Реакция переаминирования представляет собой основной процесс новообразования аминокислот в природе. Этот процесс был открыт в 1937 г. А. Е. Браунштейном и М. Г. Крицман. При взаимодействии аминокислоты с кето кислотой (обычно с дикарбоновой) образуются новые амино- и кетокислоты. [c.469]

    Полуамиды алициклических дикарбоновых кислот легко превращаются в аминокислоты. Из полуамидов изомерных труксилловых и труксиновых кислот при обработке вoдlHJM щелочным пшохлоритом образуются соответствующие аминокислоты с выходами 70—850/(, [39]  [c.261]

    Превращение субстрата в продукт происходит в комплексе Михаэлиса. Часто субстрат образует ковалентные связи с функц. фуппами активного центра, в т. ч. и с группами кофермента (см. Коферменты). Большое значение в механизмах ферментативных р-ций имеет основной и кислотный катализ, реализуемый благодмя наличию имидазольных Фупп остатков гиствдина и карбоксильных фупп дикарбоновых аминокислот. [c.80]

    Дикарбоновые аминокислоты — аспарагиновая и глутаминовая. Обе аминокислоты получаются с хорошими выходами из ацетиламиномаланового эфира. Так, при конденсации ацетил- [c.447]


Смотреть страницы где упоминается термин Аминокислоты дикарбоновые.: [c.236]    [c.91]    [c.422]    [c.371]    [c.654]    [c.214]    [c.315]    [c.80]    [c.516]    [c.295]    [c.79]    [c.133]    [c.263]    [c.15]    [c.529]   
Аминокислотный состав белков и пищевых продуктов (1949) -- [ c.0 ]




ПОИСК







© 2025 chem21.info Реклама на сайте