Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия доказательства наличи

    Ионный характер связи проявляется, в частности, в том, что многие соли, например галоидные соли щелочных металлов, растворяются в по-лярных растворителях, диссоциируя на ионы. Однако факт отсутствия растворимости не может еще служить доказательством наличия у соединения неполярной связи. Так, энергия связи, например, у окислов настолько больше энергии связи щелочных га-логенидов, что диэлектрическая постоянная воды уже недостаточна для отрыва ионов от кристалла. [c.243]


    В работе [53] экспериментальным путем установлена связь ко эффициентов массопередачи с потерей энергии (напора) на трение АРь- Несмотря На отсутствие достаточно надежных теоретических обоснований подобной зависимости, полученные при этом расчетные уравнения обобщают большой экспериментальный материал и поэтому могут быть также использованы в расчетах массопередачи. Зависимость коэффициентов массопередачи от потери энергии газового потока на трение в работе [65] связывается с диссипацией энергии газового потока в жидкости и рассматривается как доказательство наличия механизма обновления поверхности контакта фаз при массопередаче в турбулентных потоках. [c.97]

    Фракционирование изотопов легких элементов в природе может происходить вследствие различия в свойствах, связанных с кинетикой реакций [ 101 ], несмотря на незначительную разницу в энергиях активации химических реакций для различных изотопов. В качестве примера может быть приведен факт, обнаруженный Юри [2070], что водоросли содержат на 3% меньше чем СОг в окружающем их растворе. Юри рассматривал это как доказательство наличия реакций с такими константами скоростей, которые способствуют накоплению в водорослях. Подобное изотопное обогащение одного компонента относительно другого имеет огромное значение для создания методов разделения изотопов этот вопрос будет рассмотрен ниже. [c.101]

    Доказательства наличия энергии [c.266]

    Наиболее энергично присоединяется хлор, труднее всего — иод. Это объясняется уменьшением энергии связи углерод — галоген от хлора к иоду (76 ккал для С—С1, 63 шал для С—Вг и 47 ккал для С—Л). В лабораторной практике особенно часто применяют бромирование, используемое в качестве метода доказательства наличия кратной связи (обесцвечивание бромной воды при встряхивании с исследуемым веществом) и метода количественного определения числа двойных связей в непредельных соединениях (поскольку присоединение брома к двойной связи протекает количественно в определенных условиях). [c.125]

    В последнее время было установлено, что быстро протекающая адсорбция может часто сопровождаться последующим более медленным поглощением того же газа. При повышении давления происходит поглощение дополнительной порции газа, величина которой зависит от давления. Изучение этого явления во многих случаях проводилось на металлических пленках, полученных испарением и конденсацией паров металлов. Поскольку эти пленки являются микропористыми и поскольку даже физическая адсорбция газов на тонкопористых системах, например на угле, может требовать энергии активации [272] (т. е. энергии активации поверхностной миграции), то результаты, полученные на пленках, по-видимому, нельзя считать окончательным доказательством наличия энергии активации в последних стадиях адсорбции. [c.149]


    Здесь уместно заметить, что вследствие уже упоминавшейся полной неопределенности количественных предсказаний модели ММП некоторые авторы без достаточных оснований считали возможным трактовать перечисленные выше экспериментальные доказательства наличия ближнего порядка в аморфных полимерах с позиций пачечной модели, несмотря на то что размеры областей ближнего порядка оказались намного меньшими предполагаемых [2, 4, 5] размеров ММП. Еще большие трудности возникают в случае применения модели ММП, предполагающей полное разворачивание макромолекул и потерю ими своей индивидуальности в составе пачек, для количественного описания всей совокупности физических свойств полимеров в аморфном состоянии. Наглядным примером этому служит доказательство энтропийной природы упругости каучуков в рамках молекулярной модели, основанной на представлении об аддитивности вкладов отдельных активных макромолекул, сохраняющих свою индивидуальность, в общую упругую силу сетки [46—49]. Более того, учет вклада внутримолекулярной ( конформацион-ной ) энергии цепей в упругую силу каучука [50—52] позволил установить совпадение температурных коэффициентов размеров макромолекул в сетчатом каучукоподобном полимере и в идеальном растворителе не только по знаку, но и по абсолютной величине [51—56]. Эти результаты подтверждают высказанную еще 25 лет назад гипотезу П. Флори [57] об идентичности конформаций полимерных молекул в идеальных растворителях и в блочном аморфном состоянии. Как известно [57, 58, в идеальных растворителях взаимодействие сегментов макромолекулы с молекулами растворителя энергетически менее выгодно, чем с другими сегментами этой же макромолекулы. По этой причине в разбавленном идеальном растворе силы притяжения между сегментами одной и той же макромолекулы полностью компенсируют эффект физически исключенного объема, благодаря чему полимерная цепочка приобретает компактную невозмущенную конформацию. По мнению П. Флори [57], в блочном аморфном состоянии, в котором сегменты данной макромолекулы окружены энергетически неразличимыми сегментами соседних цепей, объемные эффекты также должны исчезать, поскольку нет оснований считать, что какая-либо конформация макромолекулы, отличная от невозмущенной, окажется энергетически более выгодной. [c.6]

    Возможность переноса энергии возбуждения от одной органической молекулы молекуле иного рода при их столкновении в газообразном состоянии была впервые показана Прилежаевой еще в 1934 г. Ею наблюдалась сенсибилизация флуоресценции, т. е. появление характерного свечения паров одного соединения при добавлении паров другого соединения, поглощающего возбуждающий свет [17]. Дальнейшее доказательство наличия переноса энергии в смеси паров при сближении частиц разного рода было получено впоследствии Карякиным [18]. Такой физический перенос энергии возбуждения не сопровождается явной химической активацией молекулы, воспринимающей эту энергию. [c.382]

    Непосредственным экспериментальным доказательством наличия внутренней конической рефракции упругих волн в исследуемом кристалле являются данные, показанные на рис. 3, е, г. Если направление смещения падающей волны составляет углы +45 ° с осью Z, обычного разделения энергии упругой волны [c.335]

    Исходя из экспериментальных доказательств неоднородности строения реальных твердых веществ, неупорядоченности поверхности, наличия активных участков и возможности перераспределения поверхности путем поверхностного ползания или миграции, С. 3. Рогинский считает, что эти сложные явления оказывают непосредственное влияние на силовое поле и физические свойства поверхностей. На неоднородных поверхностях величины теплот адсорбции Q и энергий активации Е зависят от того, на каких участках поверхности протекает процесс. [c.155]

    Наличие энергетической неоднородности доказывают опыты по термической обработке платинового электрода. Так, если бы поверхность была однородной, то относительное количество мест с разной энергией связи (из-за проявления сил отталкивания) при рекристаллизации поверхности оставалось бы постоянным. В действительности при нагревании происходит преимущественное уменьшение числа мест с высокой энергией связи. Другое доказательство неоднородности поверхности представляют данные по изотопному обмену адсорбированных атомов водорода скорость обмена на различных адсорбционных центрах существенно различается. Наконец, в пользу неоднородности поверхности платинового электрода говорит тот факт, что логарифмическая изотерма адсорбции получается не только для атомов водорода, но и при адсорбции других веществ как заряженных ионов, так и нейтральных молекул. Таким образом, при объяснении закономерностей адсорбции на платине необходимо в первую очередь учитывать энергетическую неоднородность ее поверхности, хотя при адсорбции ионов в значительной степени проявляются и силы отталкивания. [c.83]


    Наиболее распространенным из таких процессов переноса является диффузия в кристаллической решетке. Водород очень быстро диффундирует в большинстве металлов, особенно с о. ц. к. структурой решетки (стали и титановые р-сплавы), и поэтому вполне уместно сопоставить скорости растрескивания (например, в области II на рис. 2) со скоростями диффузии. Такое сравнение принято проводить на основе параметров активации (в частности, энергии активации) и в целом ряде работ было получено согласие данных для двух процессов в титановых сплавах [207], сталях [172, 308, 309] и некоторых других материалах [172]. Следует, правда, отметить, что обычно нет уверенности в протекании единственного термически активированного процесса и поэтому получение энергии активации растрескивания, близкой к энергии активации диффузии, не свидетельствует ни о наличии единственного диффузионного механизма переноса, ни даже об определяющей роли диффузии в процессе переноса водорода [39, 310]. Мы не сомневаемся, что некоторые явления водородного растрескивания контролируются диффузией, однако имеющиеся доказательства такого контроля не всегда достаточно убедительны. [c.129]

    Ранние теории были основаны на экспериментальных данных полученных в условиях глубокой конверсии, а [20] более глубокое понимание механизма реакции стало возможным благодаря развитию более точных методов анализа. После этих попыток были выдвинуты теории [20] предполагающие образование в качестве промежуточных продуктов свободных радикалов. Особое значение теория свободных радикалов приобрела в работах Ф. Райса [63], который рассматривал метил, этил, пропил и аналогичные высшие радикалы как единственные промежуточные продукты реакции он разработал детально этот механизм с учетом надежных данных по энергиям активации указанных реакций. И хотя Ф. Райс подтвердил свою теорию экспериментальными кинетическими данными [20], сомнение в их существовании исторически преодолевалось с большим трудом. Долгое время наличие и тем более значение их в процессе разложения углеводородов не признавалось. Это объясняется тем, что [97] доказательство существования стабильных свободных радикалов проводилось косвенными химическими методами. [c.60]

    Отметим принципиальную особенность вывода уравнений реологии (3.12.16) и (3.12.19). Он не содержит прямых указаний на то, что сопротивление деформированию ПКС является вязким. Более того, по форме выражение (3.12.17) напоминает уравнение состояния идеального газа. Фигурирующая в нем величина пкТ равна, как известно, давлению газа, а величина Р рассматривалась как сила упругого сопротивления, поскольку ее действие вызывало изменение потенциальной энергии частицы в узле решетки. Для сравнения отметим, что вывод формулы Эйнштейна и ее модификаций с самого начала предполагал вязкий тип напряжений. Это выразилось в том, что сопротивление деформированию суспензии определялось как сопротивление вязкой среды, усиленное благодаря особенностям ее течения в присутствии недеформируемой фазы. Примем во внимание, что силы вязкого сопротивления — это силы, обусловленные потерями энергии, подводимой к системе при ее деформировании. Для доказательства того, что сопротивление деформированию является вязким, необходимо выяснить, где и как при деформировании происходит диссипация энергии — ее превращение в теплоту. Ответ содержится в выражении для работы зРИ упомянутой силы. Согласно этому выражению, деформирующая сила совершает работу, идущую на увеличение потенциальной энергии частицы, только на первой половине (х/2) полного пути Л частицы из одного равновесного положения в другое. В силу симметричного вида зависимости потенциальной энергии частицы от ее смещения из положения равновесия на второй половине п>ти сила сопротивления меняет знак на обратный. Следовательно, на второй стадии движения частица не может оказывать сопротивления деформированию. По этой причине в выражении для работы и фигурирует только половина полного пути. Движение частицы на втором отрезке пути идет под действием внутренних сил деформированной решетки, которые не совершают никакой полезной работы, т. е. полученная на первой половине пути энергия теряется. Механизм превращения этой энергии в теплоту не имеет принципиального значения. Можно, например, считать, что она превращается в энергию упругих колебаний частицы возле положения равновесия, которые постепенно передаются всем частицам, превращаясь, таким образом, в их тепловое движение. В таком варианте диссипации не требуется наличия вязкой дисперсионной среды, и поэтому теория применима к описанию вязкостных свойств обычных жидкостей, в которых дисперсионной средой является ничто — межмолекулярные пустоты. Для суспензий более подходит схема передачи энергии вязкой дисперсионной среде при самопроизвольном движении в ней частицы на второй части пути. Это важно при вычислении времени релаксации вакансий и величины потенциального барьера движения частиц в решетке, величина которого определяет частоту переходов частиц в соседний узел. [c.694]

    Применяемые в технике материалы обычно представляют собой поликристаллические материалы. Если твердое тело содержит более одного кристалла, то возникают области несогласованности в местах соприкосновения соседних кристаллов. Каждый отдельный кристалл принято называть зерном, а область несогласованности— границей зерен. Прямое наблюдение материалов в виде специально изготовленных из них препаратов — аншлифов с помощью металлографической микроскопии позволяет фиксировать непосредственно наличие границ зерен в различных материалах. На рис. ПО приведена микрофотография портландцементного клинкера, иллюстрирующая природу различных фаз, из которых состоит этот материал, и наличие границ зерен. В физико-химическом аспекте важно отметить, что атомы на границе зерен имеют повышенную энергию по сравнению с атомами внутри зерна, и как следствие этого большую реакционную способность. В связи с этим важное значение приобретает площадь границ зерен, приходящаяся на единицу объема. Существуют статистические подходы, позволяющие при наличии сведений о микроструктуре образца оценить площадь зерен, приходящихся на единицу объема 5 (мУм ). Не приводя вывода и строгого доказательства, отметим лишь, что [c.381]

    Молекулы 1Н-азепина и оксепина неполярны, и нет доказательств наличия в них делокализованной системы электронов. Существует значительный контраст в свойствах пиррола и 1Н-азепина, так как азепин представляет собой нестабильный полнен, который легко перегруппировывается в ЗН-таутомер. Это может быть связано с различным числом т-электронов в циклах пиррола и азепина если бы 1Н-азепин был планарен, его циклическая электронная система содержала бы восемь т-электронов. Было рассчитано, что такая планарная структура обладает отрицательной энергией резонанса по сравнению с ациклической моделью. В связи с этим изучение этих соединений важно для развития концепции ароматичности. [c.430]

    Известны многочисленные доказательства наличия ряда основности НгО> >СНз0Н>С2Н50Н [31, 32]. Однако полного согласия по этому вопросу не достигнуто. Например, спектрофотометрическое исследование [33] п-нитроанилина в водных растворах кислот и спиртов показывает, что метанол и изопропанол являются более основными, чем вода, в том случае, когда растворитель содержит 2—10% спирта. Фикинс и Ватсон [34] определили значение свободной энергии протона в 10 и 43,12% метанола, экстраполировав по методу Измайлова [28] значения свободной энергии переноса галогеноводородов. Они пришли к заключению, что протон имеет более низкое значение свободной энергии по сравнению с чистой водой. Из равновесных измерений ряды основности установить трудно, так как электростатический эффект, зависящий от изменения диэлектрической проницаемости, накладывается на эффект основности [35, глава 13]. [c.166]

    Экспериментальные определения фактора возбуждения показывают, что в пламенах, т. е. прн химическом возбуждении свечения хемилюминесценция), величина [, как правило, всегда значительно превосходит значение термического фактора. Эта особенность хемилюминесценции есть следствие неравновесной природы этого вида излучения, возбуждение которого непосредственно связано с энергией, выделяющейся в результате гех или иных элементарных химических процессов. Отсюда следует большое значение хемилюминесценции не только как метода идентификации лабильных промежуточных веществ, но и как тонкого метода установления деталей химического механизма реакций. Приведем следующий пример. Из измерений абсолютной интенсивности полос гидроксила в спектре разреженного пламе1ш водорода (давление 10 мм рт. ст., температура 1000 К) следует, что она минимум в Ю раз превышает интенсивность равновесного излучения в условиях этого пламени. Рассмотрение различных возможных механизмов возбуждения гидроксила в пламени приводит к заключению, находящемуся в количественном согласии с данными исследования свойств излучения гидроксила и с механизмом горения водорода, что возбужденный гидроксил возникает в результате рекомбинации атомов Н и О. Таким образом, установление неравновесного характера излучения ОН можно рассматривать как косвенное доказательство наличия в зоне горения водорода атомов Н и О. Этот вывод подтверждается также и другими данными [133]. [c.75]

    ПоказаноЮ5, что это значение включает 0,5 эв кинетической энергии осколков. Другие исследователи ЮЗ, 104 нашли доказательств наличия этой энергии. [c.360]

    Присутствие гидрофобных областей в структуре белков доказано экспериментально по данным растворимости углеводородов в растворах белков [283—286] и по интенсификации флуоресценции реагентов типа К—О—5 или А—О—5, связанных или сорбированных в этих областях. На большое значение флуоресценции при таких исследованиях впервые указывали Остер и Нишид-жима [287, 288]. Они подчеркивали, что молекула основания со свободно вращающейся группой хромофора начинает сильно флуоресцировать, если вращение заторможено вследствие адсорбции. Тушение флуоресценции вследствие теплого рассеяния энергии возбуждения за счет внутреннего вращения может быть уменьшено при фиксации планарной молекулы на биополимере. В последнее время подобное увеличение флуоресценции исследуется в связи с наличием в белках гидрофобных областей. Например, при адсорбции 1-анилино-8-нафталинсульфокислоты (АНС) на апомиоглобине и апогемоглобине, свободных от группы гема, флуоресценция группы претерпевает изменения добавление гема восстанавливает первоначальную флуоресценцию [289]. При адсорбции полоса флуоресценции 515 нм смещается в область 454 нм, а квантовый выход увеличивается в 200 раз, от 0,004 до 0,98. Вообще я — л возбужденные состояния я-электрон-ной системы стабилизуются по сравнению с основным состоянием за счет воздействия молекул растворителя в относительно большей степени, так что снятие этого эффекта интенсифицирует флуоресценцию и вызывает смещение в длинноволновую часть спектра. Опыты с модельными соединениями в растворителях с различными дипольными моментами свидетельствуют в пользу такого объяснения. Доказательством наличия в бычьем сыворо- [c.378]

    Затраты энергии на дополнительную ионизацию двух- или однозарядного иона вполне компенсируются выигрышем в энергии решетки или энергии гидратации солей иона М +, имеюш,его меньший радиус, чем ионы М + и М+. Наиболее устойчивые ионы М + и М + образуют элементы, приобретающие при этом конфигурации / , Р и Так, церий и тербий приобретают конфигурации / и Р соответственно, переходя в состояние окисления IV, тогда как европий и иттербий имеют соответственно конфигурации Р и Р в состоянии окисления II. Эти факты, по-видимому, подтверждают положение, что существование у лантанидов степени окисления, отличной от 1П, в какой-то мере определяется особой устойчивостью конфигураций / , Р и Р. Однако этот аргумент становится менее убедительным, если обратить внимание на то, что самарий и тулий в состоянии имеют конфигурации / и / , но не образуют ионов М+, тогда как празеодим и неодим образуют ионы М + с конфигурациями Р и Р, но не бывают пяти- и шестивалентны. Как известно, состояния Зт", особенно Тт , Рг и Ыс действительно очень неустойчивы, и представление о том, что устойчивость возрастает по мере приближения к конфигурациям / , р и / вряд ли справедливо вероятно эти конфигурации реально не достигаются. Существование иона N(1 + (Р) и доказательства наличия в кристалле ионов Рг + и Се + приводят к неоспоримому выводу, что хотя кон-фигуации / , р и Р действительно отличаются особой устойчивостью, но стабильность состояний окисления в не меньшей степени определяется и другими факторами, например термодинамическими и кинетическими. [c.503]

    Более однозначные результаты по исследованию после-эффектов методом ВУК были получены на свободных атомах. Например, при эмиссии а-частиц дочернее ядро может вылететь с поверхности твердого тела, получив энергию отдачи 100 Кэв. Это обстоятельство было использовано для изучения анизотропии угловой а — укорреляции в случае Ат. Дочерние атомы вылетали в вакуум, становясь свободными, и анизотропия для таких атомов уменьшалась Это служит доказательством наличия после-эффектов а-распада, поскольку для свободного атома отсутствует квадрупольное и магнитное взаимодействие. [c.265]

    Работа выхода электронов. Эмиссия электронов с поверхности кристалла является чувствительным критерием для доказательства наличия адсорбционных слоев. Каждый кристалл обладает характерным потенциалом выхода электронов, определяющим энергию, необходимую для эмиссии электронов, которая может быть фотоэлектронной или термоэлектронной. Так как потенциал выхода электронов с поверхности металла сильно зависит от присутствия адатомов, то можно этим методом измерять степень покрытия 0 поверхности адатомами, причем можно обнаружить степени покрытия, начиная от долей моноатомного адсорбированного слоя. При малых степенях покрытия 0<1 (0=1 соответствует моноатомному покрытию). Для различных комбинаций металл — адаТомы получается линейное соотношение между разностью интегрально измерен1н.1х потенциалов выхода ДФ II степенью покрытия 0  [c.363]

    Каротиноиды или фикобилины никогда не проявляли способности осуществлять фотосинтез без хлорофилла это поддерживает взгляд, высказанный Энгельманом [58,61], что добавочные пигменты не участвуют прямо в окислительно-восстановительном процессе, а передают свою энергию возбуждения хлорофиллу. Как установлено в главе XVHI, этот физический механизм кажется гораздо вероятнее для случая передачи энергии между двумя красителями с перекрывающимися полосами поглощения, чем для передачи энергии от пигмента к бесцветному субстрату. Сенсибилизируемая каротиноидами флуоресценция хлорофилла у зеленых и диатомовых водорослей дает прямое доказательство наличия процесса [c.566]

    Все эти измерения, хотя каждое из них и не вполне надежно, в целом дают довольно отчетливую картину строения полимера. Так, установлено, что содержание групп СНз на 1000 атомов углерода составляет в полиэтилене высокого давления 20—30, в полиэтилене, полученном на катализаторах Циглера, — 3—10 и в полиэтилене, полученном методом Phillips ,— 1—2. Обычно короткие боковые ответвления представляют собой этильные и бутильные группы. Никаких доказательств наличия в полиэтилене метильных боковых групп не получено. Данные масс-спектрометрического анализа, проводимого по газообразным продуктам, которые образуются при облучении полиэтилена частицами высокой энергии, подтверждают заключения о строении цепи полиэтилена, сделанные на основании изучения инфракрасных спектров. [c.326]

    При проведении дальнейшей экспериментальной и теоретической работы требуется выяснить механизм первичного тушения. Одним из возможных методов решения этого вопроса может быть сопоставление формы начальных сцинтилляционных импульсов, возбужденных различными частицами одной и той же энергии, с помощью которого может быть осуществлено исследова ние изменений времени тущения. Это время, по-видимому, слишком мало чтобы его можно было разрешить с помощью существующих фотоумножите лей. Косвенное доказательство наличия первоначальной импульсной вспыш ки при сцинтилляциях, возбуждаемых а-частицами, дано Райтом [59] но какие-либо прямые наблюдения таких компонент с быстрым затуханием отсутствуют. [c.175]

    Теория описывает тушение при ионизации как бимолекулярные процессы тущения, которые ограничиваются диффузией энергии возбуждения из колонки ионов. Таким образом, эта теория сочетает в себе некоторые черты ранних теорий Райта [55] и Каллмена и Брукера [54] и приводит к уравнению того же вида, что и предложенное ранее Бирксом [19]. Райт [59] получил косвенное экспериментальное доказательство наличия предсказанного начального импульса в сцинтилляциях, возбужденных а-частицами, но желательны более прямые наблюдения (см. ниже раздел 1,1). Недавние усовершенствования малоинерционных фотоумножителей и субнаносекунд-ных методов измерений дают возможность провести эти наблюдения. [c.177]

    Истинные растворы представляют собой термодинамически устойчивые равновесные системы, так как они образуются сямоппоиявольно (при простом смешивании их компонентов), Причем растворение сопро-вождается уменьшением свободной энергии. Поскольку истинные растворы находятся в состоянии равновесия, концентрация их не меняется со временем. При очень медленных, трудно обнаруживаемых изменениях в системе нелегко установить, является она равновесной или нет. Для доказательства наличия истинного равновесия в этом случае исходят из положения, что состояние равновесия не зависит от пути достижения его. [c.363]

    Существование двух и только двух различаюпщхся по энергии занятых уровней в молекуле метана, нижний из которых соответствует орбитали фь а второй, более высокий, - орбиталям щ, Ф з, Ф4, имеет четкое экспериментальное доказательство, состоящее в том, что у молекулы метана есть два потенциала ионизации. Потенциалы ионизации обьшно находят из фотоэлектронных спектров, представляющих собой орбитальный энергетический спектр данной молекулы. Фотоэлектронные спектры дают информацию о том, какая энергия необходима для удаления электрона с определенной орбитали. Наличие в фотоэлектронном спектре двух пиков, соответствующих потенциалам ионизации около 13 и 23 эВ, показывает, что картина, изображенная на рис. [c.44]

    Приближенный анализ скользящего потока. Так как в данный момент нет в наличии прямых решений уравнений потока и энергии для области скользящего потока, то задача рассматривалась путем использования уравнений для обычного потока и энергии с введением эффектов разрежения в граничные условия. Были расмотрены два основных эффекта в явлении скользящего потока. Во-первых, как было показано теоретически Максвеллом и экспериментально Кундтом и Варбургом, вблизи гр.аницы скорость тотока не равна нулю и поток скользит вдоль стенки с конечной скоростью. Вонвгорых, температурный скачок, как было принято без доказательства Пойсоном, имеет место при переносе тепла от поверхности к разреженному газу, [c.349]

    Расчет энергии проводился, как и для хлорофилла, по частотам валентных колебаний воды, поэтому на рис. 65 в качестве примера представлено поглощение в этой спектральной области для некоторых соединений. Из рисунка видно, что в спектрах изученных кристаллических солей отсутствует полоса у - 3600 см , следовательно, несвязанных ОН-групп в данных соединениях нет. В то же время в неорганических фосфатах существование таких групп вполне возможно, доказательством чего служит наличие полосы при 3600 см . Можно, таким образом, полагать, что в соединениях NAD, ADP, NADP мо- лекула воды одновременно участвует в двух водородных [c.147]

    При повышении температуры происходит разупорядочение. В первую очередь возникают тепловые колебания составных частей решетки. Средняя амплитуда таких колебаний невелика и не превышает межузельного расстояния. Однако всегда существуют флуктуации энергии для частиц некоторые из них, имея су-нгественно большую энергию и амплитуду колебаний, могут покинуть регулярные позиции и попасть в междоузлие. Возникают дефекты двух типов (рис. 4) вакансии — незанятые места в решетке (дефект Шоттки), или внедрение частицы между узлами решетки (дефект Френкеля). Доказательство неизбежности наличия дефектов в кристаллах при температуре выше абсолютного нуля принадлежит Я. И. Френкелю. [c.46]


Смотреть страницы где упоминается термин Энергия доказательства наличи: [c.97]    [c.74]    [c.107]    [c.597]    [c.244]    [c.346]    [c.438]    [c.1446]    [c.1446]    [c.147]    [c.29]    [c.52]   
Неорганическая химия (1987) -- [ c.266 , c.268 ]




ПОИСК







© 2024 chem21.info Реклама на сайте