Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Влияние поверхностных сил на образование и свойства новой фазы

    Монография содержит изложение термодинамики фазовых равновесий, включая термодинамику дисперсных систем. Даны характеристики поверхностных слоев и пленок (натяжение, упругость, состав, кривизна и т. д.) в связи с параметрами состояния систем излагается влияние диспергирования на основные свойства гетерогенных систем. Рассмотрены равновесия с участием газообразных, жидких и кристаллических фаз, мембранные равновесия, включая электрохимические системы, а также образование зародышей новых фаз. Приведены примеры термодинамических расчетов. [c.119]


    Отмеченные явления вызваны пересыщением, связанным с образованием новой фазы, и различием состояний вещества в зародыше новой фазы, имеющем очень малые размеры, и в большом объеме этой фазы. Это различие, как впервые показал Гиббс, обусловлено влиянием поверхностного натяжения и кривизны поверхности образующегося зародыша новой фазы. Величина поверхностного натяжения определяется молекулярными свойствами вещества, а кривизна поверхности зародыша новой фазы — условиями его образования. Термодинамический анализ позволяет количественно учесть роль этих факторов и показывает, что явления пересыщения, приводящие к установлению метастабильного равновесия, обусловлены самой природой процессов фазовых переходов. Не входя в обсуждение этих вопросов, весьма подробно рассмотренных в работе А. И. Русанова [12], отметим, что с пересыщением необходимо считаться при экспериментальном определении критических констант. Это же относится к определению условий любых фазовых переходов. Широко известны, например, явления переохлаждения расплава нри определении температуры кристаллизации. [c.78]

    Речь идет о регулировании поверхностной энергии (а значит, и энергии взаимодействия дисперсных фаз), в частности, с помощью поверхностно-активных веществ различной химической природы и строения, а также электролитов. Для изыскания методов регулирования существенное значение приобретает установление закономерностей влияния на свойства дисперсных систем химических факторов в сочетании с одновременным воздействием механических (вибрационных), ультразвуковых, электрических и других полей. Это объясняется тем, что большинство реальных химико-технологических процессов осуществляется в динамических условиях. Поэтому решение проблемы управления технологическими процессами с участием дисперсных систем требует анализа поверхностных явлений и прежде всего контактных взаимодействий между дисперсными фазами, а значит, процессов образования и разрушения дисперсных структур в условиях динамических воздействий на системы. Специфика нового подхода к проблемам технологии дисперсных систем и материалов состоит в следующем. Реализация высоких значений дисперсности и концентрации твердых фаз в жидкой и газовой средах как весьма эффективного пути интенсификации гетерогенных процессов и повышения качества дисперсных материалов связана с необходимостью разрешения коренного противоречия современной технологии. Суть этого противоречия заключается в том, что по мере увеличения дисперсности и концентрации твердых фаз (и именно вследствие этого) резко возрастают вязкость и прочность структур, самопроизвольно возникающих в дисперсных системах. [c.9]


    Естественно ожидать, что в быстрых процессах динамические свойства будут иметь большее значение, чем равновесные. В качестве примера рассмотрим мощность, необходимую для образования эмульсии. Допустим, что масло (межфазное натяжение а = 1 дин/см) должно быть заэмульгировано со скоростью —500 л/ч. Если капли имеют радиус порядка 1 мкм, то мощность, которая требуется для образования новой поверхности, составит 5-10 л. с. В более ранней литературе такие расчеты нередки, хотя в действительности требуется мощность порядка 2 л. с. Расхождение обусловлено пренебрежением работой, затрачиваемой на приведение жидкости в движение во время эмульгирования. Используя некоторые простые модели для описания процесса образования эмульсий, можно вычислить потери мощности на преодоление вязкости (Монк, 1952 Субрама-ньям, 1966). Эта величина оценивается от 0,1 до 10 л. с., что соответствует опытным данным. Таким образом, в большинстве случаев процесс разрыва поверхности, по-видимому, вызван явлениями, происходящими в жидкой фазе, с учетом электрических и диффузионных факторов. Объяснение механизма действия облегчается при использовании термодинамических параметров, таких как поверхностная энергия. Природа и концентрация компонентов оказывают косвенное влияние, как и природа поверхности и вязко-эластичные свойства. [c.10]

    Влияние свойств топлива на качество распыливания. Распыливание жидких топлив связано с необходимостью преодоления сил, противодействующих образованию новых поверхностей раздела фаз, т. е. сил сцепления молекул топ.яива и поверхностного натяжения жидкости на границе с газовой средой. Таким образом, распыливание струи топлива при прочих равных условиях зависит от вязкости и поверхностного натяжения топлива. [c.109]

    Ребиндера) и показал (1930— 1940) пути облегчения обработки очень твердых и труднообрабатываемых материалов. Обнаружил электрокаииллярный эффект пластифицирования металлических монокристаллов в процессе ползучести при поляризации их поверхности в растворах электролитов. Исследовал особенности водных растворов поверхностно-активных веществ (ПАВ), влияние адсорбционных слоев на свойства дисперсных систем. Выявил (1935—1940) основные закономерности образования и стабилизации пен и эмульсий, а также процесса обращения фаз в эмульсиях. Установил, что моющее действие включает сложный комплекс коллоидно-химических процессов. Изучал образование и строение мицелл ПАВ, развил представления о термодинамически устойчивой мицелле мыл с лиофобным внутренним ядром в лиофильной среде. Выбрал и обосновал оптимальные параметры для характеристики реологических свойств дисперсных систем и предложил методы для их определения. Выяснил механизм гидратационно-го твердения минеральных вяжущих, Открыл (1956) явление адсорбционного понижения прочности металлов под действием металлических расплавов. Создал (19й0-е) новую область науки — физикохимическую механику. [c.420]

    Важные результаты, позволяющие по-новому взглянуть на механизм процесса пенообразования полимеров и формирование их микроструктуры, недавно опубликованы Баумхакелем [38]. Им было изучено влияние скорости перемешивания композиций и количества содержащегося в них воздуха на процесс вспенивания эластичных пенополиуретанов. Методика исследования основана на хорошо известном явлении при вспенивании в открытых формах количество газа, выделяющегося из компонентов смеси, а следовательно, структура и свойства пенопласта, зависят от скорости перемешивания композиции. Таким образом, количество воздуха в реакционной смеси можно варьировать путем изменения скорости вращения мешалки. Образование ячеистой структуры пе-нополимера происходит, строго говоря, на всех стадиях и при смешении компонентов во время вспенивания, и в процессе стабилизации ячеек при отверждении. Как было показано [38], образование пузырьков газа способствует снижению поверхностного натяжения жидкой фазы, что равнозначно добавлению в систему поверхностно-активных веществ (ПАВ). В данном случае речь идет о пузырьках вспенивающего газа — СОг, выделяющегося при взаимодействии диизоцианата и воды. [c.18]

    Теория образовапия новой (дисперсной) фазы, возникновения и роста зародышей в метастабильной среде. Конденсационные методы образования диснерсных систем. 4) Теория устойчивости, коагуляции и стабилизации различных дисперсных систем, включающая строение частиц дисперсной фазы (см. Мицеллы). 5) Физико-хи.иическая механика дисперсных систем, включающая теорию механического диспергирования, образовапия новых поверхностей в процессах деформации и разрушения твердых тел, влияние понижения поверхностной энергии (в результате адсорбции) на механические свойства и дисперсную структуру деформируемого твердого тела, явления дисперсного упрочнения. Образование пространственных структур в дисперсных системах и механич. свойства таких структур (тиксот репные коагуляционные структуры, конденсационные и кристаллизационные структуры), точения структури- [c.322]


    Влияние изменения состава лигандов на катали.э. При катализе по лигандному механизму активность катализаторов и характер процесса могут сильно изменяться за счет изменения состава лигандной оболочки. Для гомогенных комплексных катализаторов такие эффекты хорошо известны и широко используются. В последнее время Хидекель в своих работах по синтезу и исследованию каталитических систем — аналогов ферментов для жидкофазных реакций обнаружил подобные явления при катализе различных реакций гидрирования молекулярным водородом на платине и на других металлах У1П группы. Введением различных органических и неорганических веществ с резко выраженными донорными и акцепторными свойствами в одних случаях удается получать весьма активные катализаторы гидрирования углеводородов, в других случаях — высоко селективные катализаторы мягкого гидрирования непредельных карбонильных соединений в соответствующие непредельные спирты. Основной механизм действия таких добавок, вводимых в жидкую фазу,— алкоголятов щелочных металлов, хинонов и др.,— по-видимому, сводится к образованию на поверхности лигандных соединений, содержащих наряду с субстратом (Из и гидрируемое соединение) лигандные активаторы, создающие новые более сложные и более совершенные каталитические системы, напоминающие биокатализаторы с сокатализаторами [40]. Эти явления в то же время сходны и не всегда отличимы от разных случаев модифицирования. В этом плане весьма интересны данные по сильной металлоидной активации платины для газовых реакций, полученные в последнее время в нашей лаборатории при изучении действия металлических катализаторов с поверхностью, очищенной в ультравакууме. Поучительный пример сильной активации наблюдается при реакции СО2 + Н2СОН2О. После нескольких опытов самоактивация снижает температуру реакции с 1200 до 400° С. По-видимому, она связана с частичным восстановлением СОхем водородом до С, образующего поверхностный карбид платины. [c.61]


Смотреть страницы где упоминается термин Влияние поверхностных сил на образование и свойства новой фазы: [c.10]   
Смотреть главы в:

Рост алмаза и графита из газовой фазы -> Влияние поверхностных сил на образование и свойства новой фазы




ПОИСК





Смотрите так же термины и статьи:

Поверхностные свойства



© 2025 chem21.info Реклама на сайте