Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина активация

    Действительно, в 1,3-диметилциклопентане метильные группы вступают в конформационные 1,2- и 1,3-взаимодействия друг с другом или с атомами водорода кольца. Если при образовании переходного состояния эти взаимодействия растут или уменьшаются, то соответственно изменяется и энергия активации. Секстетно-дублетный механизм гидрогенолиза циклопентанов на платине дает возможность хотя бы качественно рассмотреть геометрию образовавшегося переходного состояния, адсорбированного на поверхности катализатора. Согласно этому механизму [154], при адсорбции все пять атомов углерода кольца располагаются в междоузлиях грани (111) решетки платины, т, е. на правильном шестиугольнике. При этом длина четырех С—С-связей кольца практически не изменяется, но пятая связь по очевидным геометрическим соображениям оказывается растянутой. Именно по этой ослабленной связи и происходит гидрогенолиз. Такой подход дает возможность рассмотреть изменение конформационных взаимодействий [c.144]


    Другим примером может служить окисление ЗОг до ЗОз. Энергия активации этой реакции в присутствии платины 15 ккал/моль. При использовании же палладия в качестве катализатора энергия активации достигает значения 22 ккал/моль. В гомогенной системе (без использования катализатора) энергия активации этой реакции составляет 60 ккал/моль. [c.271]

    На обратимом водородном электроде двойной электрический слой на платине построен таким образом, что поверхность платины заряжена отрицательно, а внешняя обкладка двойного слоя образована ионами гидроксония. При катодной поляризации, т. е. при подводе к поверхности электрода электронов, ионы гидроксония, подходящие к поверхности электрода, разряжаются не сразу, а предварительно включаются в двойной слой. Вследствие этого поверхностная плотность заряд,з двойного слоя и потенциал электрода увеличиваются, что приводит к растяжению связей между протоном и молекулой воды, т. е. к деформации иона гидроксония и его активации. [c.625]

    Катализатор повышает скорость реакции, направляя ее по другому пути — с меньшей энергией активации. В результате больше молекул могут преодолеть барьер и за данный промежуток времени образуется больше продуктов. В автомобильных конвертерах 1-3 г платины, палладия или родия действуют как катализаторы. [c.422]

    Термодинамически — процесс изомеризации низкотемпературный, причем низкие температуры способствуют образованию более разветвленных и соответственно более высокооктановых изомеров. Однако для увеличения скорости превращения изомеризацию ведут при относительно высокой температуре 380—400°С. Используют катализаторы, содержащие платину, палладий, нанесенные на оксид алюминия или цеолит. Промышленный отечественный катализатор ИП-62 содержит около 0,5% на оксиде алюминия активация катализатора проводится фтором. Позднее были разработаны и другие, более эффективные, катализаторы — НИП-66 (алюмоплатиновый, 0,6% Р1, промотированный хлором), ИЦК-2 (0,8% Рс1 на цеолите СаУ) [20]. В присутствии катализатора НИП-66 процесс проводят при низкой температуре (до> 130—140°С). Так, при 150°С, объемной скорости подачи н-пентана 1,5 и давлении 3 МПа в катализате получали около 65% изопентана. На промышленном катализаторе ИП-62 при 380— 450 °С выход изопентана за однократный пропуск сырья составил 50—55% для повышения выхода целевого продукта процесс проводят с рециркуляцией непревращенного н-пентана, в итоге выход изопентана достигает 96—98% (на н-пентан), т. е. близко к теоретическому. [c.76]


    Процесс изомеризации проводят при температуре 350+400°С и давлении 3,0- 3,5 МПа с использованием катализаторов, содержащих платину, палладий, нанесенные на оксид алюминия или цеолит. Для активации катализаторы промотируют фтором или хлором. Для подавления побочных реакций применяют циркуляцию водородсодержащего газа. [c.34]

    Другие металлы, как, например, серебро, медь и платина, характеризуются значительно более высокими работами выхода, и потому возможно, и даже весьма вероятно, что соответствующий им минимум Е будет выше, чем уровень А (рис. 19). Здесь мы снова имеем случай эндотермического хемосорбционного процесса. Образование измеримого количества хемосорбированного кислорода таким путем вряд ли возможно, но при каталитических процессах окисление других молекул вполне может происходить за счет ионов О2, которые весьма активны и образуются в больших количествах, если источником энергии активации является тепловая энергия. Соответствуюи ие рис. 19 молекулярные кислородные ионы каталитически активны, несмотря на то, [c.84]

    Энергия активации этой реакции при 800 К составляет 190 кДж/моль. В присутствии платины энергия активации снижается до 60 кДж/моль, кроме того скорость зависит от площади поверхности 5 платины  [c.173]

    Основной суммарный кинетический эффект катализатора в гетерогенно-каталитических реакциях заключается в снижении энергии активации. Так, при разложении иодистого водорода на водород и иод энергия активации снижается "с 184 кДж/моль при отсутствии катализатора до 59 кДж/моль в присутствии платины и до 107 кДж/моль в присутствии золота.  [c.205]

    Известны положительные катализаторы, ускоряющие реакции. Эти катализаторы направляют реакции по такому пути, который снижает энергию активации, что приводит к возрастанию доли реакционноспособных частиц и ускорению процесса, Так, например, энергия активации реакции 2Н1= На + Ь в присутствии катализатора платины снижается со 184 до 69 кДж/моль. [c.25]

    Тепловые эффекты каждой из стадий определяются независимым путем, что позволяет в дальнейшем сопоставить каталитическую активность, в некотором ряду катализаторов, полученную экспериментально, с тепловыми эффектами отдельных стадий. Использование этого принципа ограничено каталитическими реакциями, характеризующимися одинаковыми механизмами и малыми изменениями энтропии активации. Условие (П.1) выполняется при предварительном подборе катализаторов для реакции окисления водорода, синтеза аммиака, разложения муравьиной кислоты и т. п. В частности, в реакции окисления водорода в соответствии с условием (II.1) из окисных катализаторов наиболее активна УгОз, из металлов — платина. [c.25]

    Энергия активации гидрирования этилена в газовой среде без катализатора А = 182 кДж/моль. Определите, во сколько раз возрастет скорость реакции гидрирования в присутствии тонкораздробленной платины, если в этом случае энергия активации равна 41,8 кДж/моль (см. табл. 5.2), принять 7 = 500 К (расчет аналогичен задаче 2). [c.135]

    По аналогии с механизмами реакций, осуществляемых в процессах каталитического риформинга на платине (см. 10.2.2) и паровой конверсии углеводородов ( 9.1), можно предположить, что реакции гидрогенолиза гетероатомных углеводородов на АКМ и АНМ катализаторах потекают также многостадийно через хемо — сорбцию реактантон на активных центрах как кобальта (никеля), так и молибдена. При этом на кобальте (никеле) осуществляются активация Н и спилловер атомарного активного водорода, а на молиб — [c.211]

    Практика показывает, что энергия активации реакции окисления сернистого газа в серный ангидрид на промышленны.х катализатора.х, как правило, равно приме[1но 17000 кал1моль. а постоянный множитель (и урапне1гии Аррениуса) скорости этой реакции иа платинированном асбесте, содержащем 0,2% платины, равен 6,1 10. Подсчитать константу скорости этой реакции на платинированном асбесте при температурах а) 400° С, б) 525° С и [c.245]

    Смесь газообразных водорода и кислорода может годами оставаться без видимых изменений, и в ней не происходит реакции образования воды. Но если внести в смесь небольшое количество платиновой черни, она взрывается. Платина является катализатором данной реакции. Как мы уже знаем, катализатор представляет собой такое вещество, которое ускоряет достижение термодинамического равновесия, но само не расходуется в этом процессе. Катализатор выполняет свою роль, изменяя механизм, или путь, реакции таким образом, чтобы при этом понизилась энергия ак-гивацип. Р сли энергия активации прямой реакции ( , на рис. 22-4) понижается на некоторую величину, энергия активации обратной реакции ( 2) должна также понизиться на ту же величину, чтобы теплота реакции осталась неизменной. Катализатор ускоряет как прямую, так и обратную реакции. Он не изменяет условий равновесия реакции, а влияет только на скорость достргжения этого равновесия. На поверхности платинового катализатора молекулы Нз диссоциируют на атомы. Эти атомы Н затем гораздо быстрее реагируют с молекулами О2, с которыми они встречаются на поверхности металла, чем молекулы Нз реагируют с молекулами О3 в газовой фазе. [c.389]


    Выведите уравнение, связывающее энергию активации приведенной реакции с работой выхода электрона из металла, и покажите, во сколькс раз изменяется скорость реакции на приведенных металлах по срапнению с платиной. Предэкспоненциальный множитель урав-№шия Аррениуса для всех металлов одинаков. [c.424]

    Как в гомогенном и рментативном катализе, в гетерогенном катализе наблюдаются явления активации, ингибирования и отравления катализаторов. Отравление катализаторов обусловливается блокировкой активных центров за счет образования прочной химической связи между молекулой каталитического яда и поверхностью катализатора. Так, для платины и ряда других металлов ядами являются HaS, H N, Hg b, OS и др. Никелевые катализаторы теряют свою активность в реакциях гидрирования в результате окисления поверхности металла. Большей частью молекулы каталитических ядов, отравляющих переходные металлы, имеют электроны на несвязывающих орбиталях. За счет взаимодействия несвязывающих [c.635]

    На рис. 6.5 показаны кривые дифференциального термического анализа (ДТА), полученные Маслянским Г.Н. при выжиге кокса с алюмоплатинового катализатора. На термограмме обнаруживаются два пика в интервале температур 200-370 С и 370-550 °С. С повышением давления водорода при риформинге выход кокса и высота обоих пиков уменьшаются. Считается, что первый пик на термограмме связан с горением непредельных углеводородов на платине, а второй пик характерен для горения кокса, карбоидизированного на кислотных центрах и инертных участках оксида алюминия. Определенную роль может играть также спилловер кислорода, заключающийся в активации молекулярного кислорода на платине, его натекании на поверхность носителя и особенно его кислртные центры и тем самым участие в реакциях окисления. Следствием является то, что при низкотемпературном окислении (до 370 С) выгорают соединения не [c.144]

    Открыты сотни веществ, ускоряющих реакцию окислення ЗОг, но были применены в производстве лишь три катализатора 1) металлическая платина 2) оксид железа 3) пятиоксид ванадия. На примерах действия этих катализаторов можно показать влияние понижения энергии активации и уменьшения порядка реакции на скорость процесса. Согласно уравнению 2502 + 02—>-250з скорость прямой реакции гомогенного некаталитического окисления 502 должна выражаться уравнением третьего порядка (порядок реакции п = 2+ 1 = 3)  [c.128]

    Первые работы по использованию благородных металлов -для гидрирования углеводов, в частности моносахаридов, относятся к 60-ым годам. Это были, в первую очередь, рутений, палладий и платина, нанесенные на различные носители [34]. В составе сплавных катализаторов благородные металлы использовались как промоторы никеля Ренея [22, 35], так как промотирование палладием, рутением, платиной и родием создает благоприятные условия для активации как водорода, так и двойных связей. Поскольку гидрирование глюкозы осуществляется в слабощелочной среде, в которой равновесие сильно смещено в сторону енольной формы, это дает основание считать, что добавление к скелетному никелю [c.42]

    Заслуживают внимания и работы, связанные с получением це-олитсодержащих катализаторов. Так, изучено каталитическое влияние цеолитсодержащих катализаторов с высокодисперсной платиной в вйде кристаллитов размером 15—20 А яа реакции гидрирования бензола [115]. Степень дисперсности платины в цеолитах зависит от температуры активации. В отработанных, активированных и восстановленных катализаторах при 300°С она образует в полостях цеолитов кристаллиты размером 10 А. Степень дисперсности составляет 100% вплоть до 800°С. В образцах катализатора, активированных при 600 °С и восстановленных при 300 °С, она уменьшается примерно до 75%. Платина диспергирована в катализаторах в виде отдельных атомов, а другая часть образует кристаллиты размерами 10 и 20 А. Так как изолированные атомы не хемосорбируют водород и недоступны для молекул бензола, активность катализатора обусловлена наличием кристаллитов. Выше 600 °С активность уменьшается вследствие нарушения кристаллической решетки цеолитов. [c.153]

    Алюмоплатиновый катализатор представляет собой окись алюминия, на которую нанесено не более 0,6% платины. Этот катализатор является бифункциональным. С точки зрения теории катализа в бифункциональных катализаторах существуют активные центры веществ, содержащие как неспаренные, так и спаренные электроны. Первые способствуют активации окислительно-восстановительных реакций. В данном случае это платина, являющаяся (так же, как и другие металлы VIII группы) типичным гидриру-ющим-дегидрирующим катализатором. Поэтому на алюмоплатиновом катализаторе развиваются реакции дегидрирования шестичленных нафтенов и дегидроциклизации алканов. Окись алюминия— вещество со спаренными электронами имеет кислотный характер. Поэтому на алюмоплатиновом катализаторе активируются реакции изомеризации, протекающие по карбоний-ионному механизму. Для усиления этой функции катализатор промотируется хлором или фтором. Б качестве промоторов, увеличивающих [c.243]

    Получение платиновой черни [7]. 80 мл раствора HjPt l,., содержащего 20 г платины и небольшой избыток H I, смешивают с 150 мл 33% формалина, охлаждают до —10° и по каплям при размешивании вводят 420 г 50% КОН при температуре не выше 6°. Выпавшую платиновую чернь после получасового нагревания с размешиванием при 55—60° промывают декантацией водой до исчезновения реакции на С1-ионы, переносят на фильтр, заботясь о том,.чтобы осадок был покрыт водой, затем отсасывают, быстро отжимают между листами фильтровальной бумаги и сохраняют в вакуум-эксикаторе. Препарат следует хранить в атмосфере углекислого газа. Перед гидрированием необходима активация катализатора воздухом или кислородом. [c.341]

    При комнатной и более высоких температурах молекулы, связанные с поверхностью вандерваальсовыми силами, постепенно становятся хемосорбированными [51]. Эта особенность кислорода отчетливо обнаруживается в его способности катализировать (благодаря парамагнитным свойствам) реакцию орто-пара превращения водорода. Будучи адсорбированным на угле при низких температурах, кислород ускоряет эту реакцию, но если адсорбция происходит при более высоких температурах, то он оказывает отравляющее действие [132, 133], Следовательно, для протекания реакции кислорода с поверхностью угля требуется энергия активации. В случае адсорбции на металлах энергия активации может быть ничтожно малой или даже равна нулю. Па поверхности цезия при температуре жидкого воздуха кислород самопроизвольно образует хемосорбционный слой молекул поверхностного окисла. Вполне возможно, что этот хемосорбционный процесс не имеет диссоциативного характера (см. далее настоящий раздел). На пленке молибдена, полученной испарением металла в высоком вакууме, переход от физической адсорбции к хемосорбции требует более высоких температур. Этот переход может быть обнаружен по уменьшению электропроводности пленки в результате хемосорбции кислорода [78]. Аналогичная картина наблюдается при адсорбции кислорода на никеле и платине [53]. [c.83]

    Однако двухвалентная медь (в виде ацетата), двухвалентная платина (в виде зтилендихлорида), а также кобальт с нулевой валентностью (в виде карбонила), несмотря на то, что они не обладают подобным строением внешней электронной оболочки, также являются эффективными гомогенными катализаторами активации водорода. Поэтому в настоящее время не представляется возможным ни дать простое обобщение электронных свойств [c.215]

    Анализ сильнонелинейных схем, подобных приведенной, объясняет многие критические явления, в том числе множественность стационарных состояний, наблюдаемых, например, при проведении реакции на никеле и платине, а также возникновение при определенных соотношениях давлений реагентов осциллирующих режимов протекания реакции. Существенно, что при этом в дополнение к приведенной схеме, дающей в предположении идеальной адсорбции на однородной поверхности только однозначное и устойчивое решение, для объяснения критических явлений и возникновения осциллирующего режима оказалось необходимым ввести дополнительные предположения, в частности, предположение о том, что в предложенной схеме энергии активации Е(и, таким образом, скорость реакций) обеих стадий с образованием воды зависят от покрытия поверхности катализатора адсорбированным кислородом Од  [c.391]

    Энергия активации реакции разложения иодоводо-рода 2Н1 = Н2-ЬЬ в газовой фазе при 800 К равна 190 кДж/моль. В присутствии платины она снижается до 60 кДж/моль. Определите, во сколько раз скорость реакции в присутствии катализатора выше скорости некаталитического разложения иодоводорода. (Необходимо знать зависимость константы скорости реакции от энергии активации — уравнение Аррениуса.) [c.58]

    Реакции электрохимического алкоксилирования двойных связей, относящиеся к реакциям анодного присоединения, согласно представлениям большинства исследователей, протекают через промежуточное образование алкоксирадикала А1кО. Возможность адсорбции частиц такого состава на металлах группы платины предполагается и при низких анодных потенциалах в водных растворах спиртов. Однако реакция алкоксилирования на неокисленных поверхностях с заметными скоростями не протекает. Это, по-видимому, связано как с существенными различиями в структуре и энергиях адсорбции частиц одинакового состава в рассматриваемых областях потенциалов, так и с необходимостью электрохимической активации молекулы ненасыщенного органического соединения, достижимой только при высоких анодных потенциалах. [c.294]

    На рис. 2.16 схематически показано изменение энергии реакционной системы при бескаталитическом и каталитическом путях реакции. Снижение энергии активации в присутствии катализаторов Д т тем значительнее, чем активнее катализатор. Так, энергия активации реакции 2HI-Hi + b снижается при введении в систему золота со 184 до 105 кДж, а в присутствии более активного катализатора - платины - до 69 кДж. [c.240]

    В общем случае энергетический профиль реакций (I) и (И) будет выглядеть так, как это обычно изображают для некаталитичес-ких и каталитических реакций (см. рис. 7). Так, реакция 2502 + 02- 250з, происходящая нри участии твердой платины, имеет Е--= = 62,80 кДж/моль та же реакция без катализаторов в гомогенной системе имеет = 251,22 кДж/моль. Энергия активации характерна, как правило, для любых реа.кций между валентно-насыщенны-ми молекулами. Но для реакций 1 она столь высока, что для ее компенсации требуется внешний стимул — подача энергии извне, без которой реакция не пойдет. Это и вызывает необходимость проводить такие реакции в необычных, экстремальных условиях, чаще всего при высоких температурах, высоких давлениях, при жестком облучении реагентов а-, (3- и у-частицами или при иных видах радиационного воздействия. Для реакций II обычно бывает достаточно той энергии, которой обладает кристаллическая решетка твердого тела или иной бертоллид. Поэтому реакции II часто начинаются без внешнего воздействия пр и обычных температурах, но лишь после внесения катализатора. [c.133]

    Катализаторами в химии выступают, как правило, бертоллидные системы. Только они обладают столь широким набором раз-.1ИЧНЫХ активных центров, что среди этого набора почти всегда найдутся центры, способные обеспечить как структурное, так и энергетическое соответствие (по принципам Баландина). Поэтому в химическом катализе широко распространены случаи каталитической активации одним и тем же ката.жзатором (например, оксидом хрома, хлоридом алюминия, фторидом бора, платиной) целой гаммы реакций и, наоборот, один и тот же субстрат может активироваться самыми различными катализаторами. Совсем иное дело в биокатализе. Биокатализаторами являются особого рода системы, в некотором роде промежуточные между бертоллидными и дальто-нидными — молекулярными их бертоллидные качества состоят в  [c.182]

    Согласно адсорбционной теории гетерогенного катализа, на поверх-кости катализатора происходит адсорбция, т. е. сгущение участвую- цих в реакции (одного или нескольких) газообразных или растворенных веществ. Сгущенные на поверхности катализатора вещества находятся как бы под большим давлением и в высокой концентрации, что само по себе уже способствует повышению скорости реакции. По этим не ограничивается действие катализатора. В результате взаимодействия отдельных атомов, составляющих молекулу реагирующего вещества, с атомами катализатора происходит ослабление нутримолекулярных сил в частицах реагирующих веществ, что приводит к активации их. Иногда при этом адсорбированные молекулы диссоциируют на отдельные атомы, отличающиеся большой химической активностью (водород на платине). [c.141]

    С энергетической точки зренйя ускорение реакций при катализе обусловлено снижением необходимых для их протекания энергий активаций (IV 2 доп. 10). На- -пример, энергия активации гомогенной реакции 2302-Н0 = 280з составляет 60 ккал/моль, а в присутствии платины она снижается до 15 ккал/моль. Такое сниже -ние получается в результате действия силового поля катализатора, за счет которого и осуществляется активированная адсорбция, т. е. отклонение внутренней структуры адсорбированных частиц от их наиболее устойчивого состояния. Даваемая таким образом реагирующей системе в кредит энергия возвращается катализатору при завершении элементарного процесса. Так как по мере снижения энергии активации число реакционноспособных частиц быстро возрастает, соответственно увеличивается и скорость реакции.  [c.348]

    Высокое термодинамическое сродство к субстрату является существенным, но не определяющим свойством фермента. Установление механизма распада перекиси водорода дало возможность найти для разных катализаторов истинные значения энергии активации Е и предэкспоненциального множителя к . Огромная активность каталазы и других ферментов целиком обусловливается сильным снижением энергии активации по сравнению с другими типами катализаторов ни один из неорганических катализаторов не способен проводить распад Н2О2 с активационным барьером ниже 46 кДж (платина), каталаза же проводит его при вдвое меньшей высоте энергетического барьера 23 кДж. [c.116]


Смотреть страницы где упоминается термин Платина активация: [c.133]    [c.417]    [c.88]    [c.310]    [c.280]    [c.321]    [c.85]    [c.107]    [c.130]    [c.163]    [c.635]    [c.303]    [c.289]    [c.317]    [c.303]    [c.107]    [c.37]   
Структура металических катализов (1978) -- [ c.228 ]




ПОИСК







© 2024 chem21.info Реклама на сайте