Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Каталитические реакции, исследование

    Такая зависимость между реакциями изомеризации и крекинга поясняет ряд характерных особенностей каталитического крекинга, давая возможность провести ряд интересных исследований для объяснения некоторых факторов, влияющих на поведение углеводородов. Тесная зависимость между изомеризацией и крекингом парафинов неоднократно наблюдалась также при низкотемпературных каталитических реакциях [c.128]


    При организации гетерогенного каталитического процесса очень важен практический вопрос, есть ли в данной реакционной системе предпосылки для саморегулирования Для ответа на этот вопрос могут быть использованы различные экспериментальные методы, с помош,ью которых либо оценивается применимость выводов теории, либо выявляется механизм реакции и устанавливаются такие факты, как суш,ествование воздействий на дезактивацию и регенерацию катализатора в ходе реакции, поведение системы вблизи или вдали от равновесия, особенности кинетики реакций, наличие общей стадии в реакции модификации катализатора и каталитической реакции и т. п. При этом в качестве методов исследования воздействия среды на катализатор могут использоваться комбинация стационарного и нестационарного (например, импульсного) способов воздействия исследование природы промежуточных поверхностных соединений физическими методами идентификация новых состояний, возникающих в ходе каталитического процесса, и т. п. [c.300]

    В заключение следует отметить, что в настоящее время стереохимический подход к некоторым каталитическим реакциям, в частности к гидрогенизации и гидрогенолизу, применяется сравнительно широко. Весьма перспективными представляются исследования гидрогенолиза оптически активных соединений [73—77]. Строение исходного соединения, природа металла, его концентрация в катализаторе, а иногда и носитель, влияют на механизм гидрогенолиза, который в зависимости от указанных факторов может проходить по 5 1-, или (-механизмам (см. обзор [78]). [c.82]

    Приведенный пример показывает, что использование представлений о внутримолекулярной ионизации циклических солей не бесперспективно при отыскании новых каталитических реакций. Исследований в этом направлении проведено, однако, еще не было, хотя может быть некоторые каталитические реакции, из числа приведенных в табл. 1, основаны на этом механизме. Для осуществления каталитической реакции на основе рассмотренного механизма способность элемента к изменению валентности не является обязательной. [c.57]

    Эффект изменения свободной поверхностной энергии меж-фазной границы при протекании гетерогенной каталитической реакции исследован в работе р4]. При проведении реакции [c.16]

    В противоположность этому каталитическая реакция на СиО, как было показано, имеет нулевой порядок по О2 и первый порядок по СО [20] при температурах около 300°. Это может быть объяснено либо слабой сорбцией СО и сильной сорбцией О2 (неконкурентная сорбция), либо тем, что лими-тирующ ей стадией является сорбция СО па поверхности, что представляется вполне вероятным. При температурах около 0° на СиО скорость реакции становится первого порядка по О2 и нулевого порядка по СО. Механизм этого процесса был выяснен с помощью исследований поверхности СиО [21]. Исследования показали, что поверхность СиО покрыта слоем сильно сорбированного СО, по-видимому, в форме иона СО . Даже при 0° этот слой может реагировать с СО, давая СО2. Если предположить, что СОд -З и СО-З находятся в равновесии с Ог-З и стадией, определяющей скорость процесса, является реакция между СО-З и СОг-З, можно объяснить вид зависимости скорости реакции [c.545]


    Значительная доля исследований каталитических реакций относится к водороду и водородсодержащим соединениям. Во всех изученных реакциях происходит межмолекулярный перенос атомов Н. Имеющиеся данные указывают также на промежуточную реакцию хемосорбции атомов Н (или ионов) на поверхности катализатора. [c.546]

    Однако в некоторых случаях значительная часть превращения осуществляется в газовом объеме, иногда на большом расстоянии от поверхности катализатора. Исследования показали, что в ходе многих каталитических реакций окисления имеет место десорбция радикалов с поверхности катализаторов в газовую фазу. Экспериментально было доказано, что катализатор может участвовать в процессе зарождения цепи в качестве инициатора свободных радикалов и в процессе продолжения цепи в качестве одного из участников элементарных стадий на поверхности [1.30]. [c.15]

    Квантовохимические исследования каталитических реакций в настоящее время не выходят за рамки простейших кластерных моделей, при этом активный центр моделируется одним-двумя атомами катализатора [16]. Применение подобных моделей особенно перспективно в случаях, когда объектом исследования является механизм каталитических реакций, однако неполноценное представительство в этих моделях самого катализатора как твердого тела снижает эффективность решения задач прогнозирования. В рамках данного подхода удается дифференцировать катализаторы весьма примитивным способом. По существу, катализатор характеризуется природой атома, выступающего в качестве адсорбционного центра. Качественные закономерности, выявление которых является предметом подобных исследований, иногда нужно установить, не проводя никаких расчетов. Таким образом, чрезмерное упрощение модели обесценивает квантовохимический прогноз, а ее усложнение и попытки адекватно передать твердотельные характеристики катализатора связаны с резким возрастанием вычислительных трудностей, и, следовательно, невозможностью изучать представляющие практический интерес сложные объекты. [c.62]

    В последние годы как в СССР, так и за рубежом проводятся интенсивные исследования, направленные на преодоление термодинамических ограничений при проведении каталитических реакций дегидрирования углеводородов, что позволило бы получать значительно более высокие выходы целевых продуктов и тем самым обеспечить резкое снижение стоимости мономеров и затрат на создание их производства. Эти работы привели к появлению нового направления в получении мономеров — окислительного дегидрирования углеводородов. [c.681]

    Разработка современного высокоэффективного контактно-каталитического промышленного процесса немыслима без реализации разветвленной многоэтапной процедуры принятия решений многоцелевого характера, начиная с исследования элементарных актов химического взаимодействия, установления механизма и кинетики каталитических реакций на элементах твердой поверхности катализатора и кончая созданием технологически и экономически оптимальных контактных аппаратов большой мощности. [c.9]

    Экспериментальные исследования для выяснения механизма каталитической реакции, осуществляемые на втором иерархическом уровне, обычно приводят к задаче выбора модели среди совокуп- [c.192]

    Очевидно, что и сам объем фаз и их соотношение в условиях проведения реакции отличаются от таковых, рассчитанных по подачам или загрузкам реагентов. Поэтому надо уметь их определять. Проще всего это было бы осуществлять визуально, однако так удается делать достаточно редко, при работе без давлений, да и то в основном на системе жидкость — жидкость. Приходится искать другие пути. Одним из них является постановка специальных исследований по определению изменения объема фаз в ходе реакции в условиях равновесия, но при отсутствии взаимодействия. Однако такие исследования даже более сложны, чем изучение кинетики. Кроме того, исключить взаимодействие, сохранив полностью условия равновесия, можно только в гетерогенно-каталитических реакциях при постановке опытов без катализатора. Вследствие этого приходится либо расчетным путем определять объем фаз, исходя из молекулярных объемов их компонентов (часто тоже расчетных) и из постулата аддитивности этих объемов в растворе, либо ориентировочно оценивать при помощи метки. Последний прием заключается в том,что в одну из фаз дается инертная метка, не влияющая на ход реакции, например бензол, полихлорид бензола и т. н., в зависимости от реакции. Определяя содержание метки в каждой пробе и зная общее количество метки, можно рассчитать объем фазы. Можно давать метку и в газовую фазу в виде гелия или аргона. Однако при давлениях — 100 кгс/см и выше растворимость этих газов довольно заметна даже для повышенных температур, что вносит ошибку в расчеты. Все же газовая метка удобнее, поскольку в ряде случаев отбор газовой пробы удается осуществить из работающего аппарата установкой в нем специальных отбойников. [c.72]


    Как указывалось в гл. 3, гетерогенно-каталитические реакции в жидкостях могут протекать по прямому электрохимическому механизму. Поэтому электрохимические методы исследования могут в этих случаях дать суш ественную информацию о механизме процесса и тем помочь в построении кинетической модели процесса. Подробнее эти методы описаны в монографии [3]. Здесь будут кратко изложены их принципы. [c.75]

    Электрохимический метод исследования кинетики жидкофазных каталитических реакций основан на том, что, измеряя потенциал катализатора и используя кривые заряжания для данного металла в данном растворителе, можно с достаточной точностью определить концентрацию сорбированного газа (водорода, кислорода) на поверхности катализатора. Знание этой концентрации и зависимости ее от таких параметров, как парциальное давление газа, концентрации реагентов и продуктов, природа растворителя, pH среды и т. п., дают хорошее обоснование для модели процесса и структуры кинетических уравнений. [c.75]

    В книге изложены теоретические основы гетерогенного катализа, кинетика каталитических реакций, научные основы подбора катализаторов. Описаны промышленные гетерогенно-каталитические процессы, расчет и устройство каталитических реакторов, синтез катализаторов и методы исследования каталитических реакций. [c.2]

    Здесь мы рассмотрим закономерности кинетики гетерогенно-каталитических реакций в отсутствие диффузионного торможения, т. е. три из перечисленных стадий — адсорбцию, собственно реакцию и десорбцию. В обычных кинетических исследованиях эти стадии неразличимы тем не менее гетерогенно-каталитический процесс остается по своей природе сложным. Этим и объясняются характерные для гетерогенного катализа сложные и разнообразные кинетические закономерности. [c.79]

    МЕТОДЫ ИССЛЕДОВАНИЯ КАТАЛИТИЧЕСКИХ РЕАКЦИИ [c.399]

    В последнее время все большее распространение получает импульсный метод исследования гетерогенно-каталитических реакций [3]. Он имеет существенные преимущества в отношении быстроты эксперимента и малого количества реагентов для исследования. Однако ввиду нестационарности условий опыта и математической сложности явлений в эксперименте этот метод пригоден только для исследования кинетики простейших реакций. Гораздо в большей степени преимущества этого метода реализуются в исследованиях по подбору катализаторов. [c.403]

    Аппараты для газо-жидкофазных реакций практически всегда выполняются для работы под давлением. По вопросу о технике лабораторных работ при высоком давлении имеется специальная литература [20]. Поэтому, остановимся только на вопросах, особо актуальных при исследовании гетерогенных каталитических реакций, не рассматривая конструктивные детали. [c.414]

    МЕТОДЫ ИССЛЕДОВАНИЯ КАТАЛИТИЧЕСКИХ РЕАКЦИЙ Глава X. Лабораторные исследования гетерогенно-каталитических реак- [c.462]

    Обсудим еще один фактор, сильно влияющий на активность цеолитов в реакциях гидрирования предварительная термообработка катализатора. Информация о влиянии условий предварительной термообработки цеолита на его активность в peaKuwix гидрирования важна дпя выяснения механизма действия катализатора, так как в результате такой обработки происходит формирование активных центров, принимающих участие в каталитической реакции. Исследования проведены на примере гидрирования 2-ме1Илбутена-2 иа цеолитах типа NaA, NaY и NaM [68]. [c.34]

    Описанная теория активных центров не согласуется полностью с соврвлменными представлениями о строении кристаллических веществ. Кроме того, при помощи теории активных центров нельзя объяснить протекание всех каталитических реакций. Исследования процесса гидрирования этилена на катализаторах синтеза аммиака при низких тeмпepaтypax показали, что в отличие от процесса синтеза ННз катализатор И1 чистого железа в реакции гидрирования гораздо более активен, чем катализатор с добавкой окиси алюминия. Активизнрующи.м действием отдельных атомов катализатора трудно также объяснить протекание в разных направлениях ряда процессов органического синтеза, в которых часто принимают участие моле-к Лы очень больших размеров. [c.498]

    Сопоставив значения констант сродства и отношений кт кя для трех десятков каталитических реакций, исследованных Снетлаге, Даусоном, Пауисом, Гольдшмидтом и Туезеном, самим Тейлором и некоторыми другими химиками, автор заметил, что отношение йт/йн повышается медленнее, чем константа сродства [334, стр. 202]. [c.101]

    Место фиксации молекулы субстрата есть арена наиболее активной химической деятельности. Процесс изменения состояния сосредотачивается, вероятно, прежде всего на этих зонах по крайней мере, для геминовых ферментов известно, что гем подвергается заметному разложению в каталитических реакциях. Исследования активных групп протеолитических ферментов привели к более или менее надежным выводам относительно состава этих групп, но нет никаких оснований утверждать, что компоненты активных групп находятся на жестко фиксированных расстояниях друг от друга. Наоборот, по всем данным субстрат способен организовывать надлежащую структуру каталитического центра. Отсюда следует, что исходные состояния в активной группе могут быть различными, т. е. она способна проходить через несколько состояний, пригодных для катализа. Изменения могут происходить не только в первичной, вторичной и третичной структурах вполне логичны допущения, что и чет- [c.169]

    Судя по любой из каталитических реакций, исследованных Мак-стедомЗ с сотрудниками, активность платиновой черни линейно падает с количеством введённого яда вплоть до некоторой критической концентрации последнего, при которой активность обычно понижена раза в четыре по сравнению с чистой поверхностью при дальнейшем же добавлении яда активность понижается гораздо медленнее. Считается, что эти количественные результаты ставят под сомнение вывод, сделанный из качественных наблюдений Вавона и Юссона [c.308]

    Область научных интересов изучение процессов адсорбции и химических реакций на поверхности твердых тел, развитие и использование поверх-ностно-чувствительных физических методов для in-situ исследований механизмов гетерогенных каталитических реакций, исследование процессов формирования активного компонента гетерогенных катализаторов, разработка способов управляемого синтеза гетерогенных катализаторов с заданными свойствами, в том числе наноразмерных систем является высококвалифицированным специалистом в области физико-химии поверхности и гетерогенного катализа. Его работы хорошо известны в стране и за рубежом. Они регулярно представлены на отечественных и международных конференциях и в приглашенных выступлениях. [c.120]

    Литература по массопередаче с химической реакцией в системах твердое тело — жидкость очень обильна и здесь может быть дана только очень краткая аннотация. Этот вопрос детально рассмотрен в ряде книг [47—52], посвященных каталитическим реакциям. Недавно было представлено много работ по факторам эффективности пористых катализаторов [63—60]. Среди прочих в работах [51—64] обсуждены некаталитические реакции газ—твердое тело. Поверхностные реакции были теоретически исследованы в ряде статей [65—74]. Обзоры исследований в области массопередачн в пограничных слоях были представлены Кузиком и Хаппелем [75] и Вегером и Хельшером [76]. Тема обсуждалась в разделах 3.4, [c.165]

    Если константа скорости изменяется от температуры по экспоненциальной зависимости, то коэффициент молекулярной диффузии и, следовательно, изменяется пропорционально в степени 1,5. Поэтому при прочих равных условиях с повышением темаературы режим реагирования быстро передвигается от кине — тич1 ского кдиффузионному. В промышленных процессах и особенно в научных кинетических исследованиях необходимо стремиться каталитические реакции проводить в кинетической или близкой к ней области реагирования. При данной температуре режим реагирования может быть приближен к кинетическому уменьшением размера зерен катализатора и увеличением скорости потока газа (или жидкости). [c.97]

    Несомненный интерес представляет цикл работ Со-морджая и сотр. [174—177] по исследованию кинетики различных реакций (в том числе дегидроциклизации) на монокристаллах металлов (Р1, 1г, N1, Ag) с одновременным определением структуры и состава поверхности методом дифракции медленных электронов и Оже-спект-роскопии. Показано, что атомные ступеньки на поверхности монокристалла Р1 являются активными центрами процессов разрыва связей С—Н и Н—Н. Зависимость скоростей реакций дегидрирования и гидрогенолиза циклогексана и циклогексена от структуры поверхности Р1 свидетельствует о существовании изломов и выступов на атомных ступеньках. Такие дефекты структуры являются особенно активными центрами процесса расщепления С—С-связей. Установлено, что активная поверхность Р1 в процессе реакции покрывается слоем углеродистых отложений свойства этого слоя существенно влияют на скорость и распределение продуктов каталитических реакций. Показано, что дегидрирование циклогексана до циклогексена не зависит от структуры поверхности (структурно-нечувствительная реакция). В то же время дегидрирование циклогексена и гидрогенолиз циклогексана являются структурно-чувствительными реакциями. Полученные результаты позволили расширить классификацию реакций, зависящих от первичной структуры поверхности катализатора и от вторичных изменений поверхности, возникающих в процессе реакции. При проведении реакций на монокристаллах 1г показано, что ступенчатая поверхность 1г в 3—5 раз более активна в [c.252]

    В настоящее время в нефтепереработке существует целый ряд технологических каталитических процессов, в ходе которых в той или иной степени осуществляются различные превращения углеводородов. В качестве примера можно привести каталитический риформинг один из важнейших современных нефтехимических процессов, с помощью которого осуществляется глубокое изменение углеводородного состава бензинов. Каталитический риформинг позволяет получать в широких масштабах ароматические углеводороды — бензол, толуол, ксилолы. Они образуются в этом процессе путем нескольких реакций дегидрирования шестичленных нафтенов, Сз-дегидроциклизации алканов в алкилциклопентаны с последующей дегидроизомеризацией и, наконец, Се-де-гидроциклизации алканов. Этот и другие подобные производственные процессы возникли в результате чисто технологических разработок. Однако сейчас пути технологических и фундаментальных исследований постепенно сближаются. Эта тенденция дает определенный положительный эффект. Так, исследование механизма и кинетических закономерностей каталитических реакций углеводородов, а также использование опыта, накопленного при эксплуатации нескольких поколений моно- и биметаллических катализаторов риформинга, позволило создать ряд высокоэффективных и экономичных разновидностей процесса риформинга. [c.257]

    Изучение изомеризации предельных угленодородов в течение болсс двух десятилетий все возрастающим числом исследователей дало много сведений, важных как для техники, так и для теории. Исследования в этом направлении стимулировались потребностью в изобутане — сырье для процессов алкилирования, а также желательностью иревращения содержащихся в бензине парафинов нормального строения в изомеры с разветвленными цепями, обладающие более высокими аитидетонацион-иыми свойствами. Практическое значение аналогичного процесса изомеризации алкилциклопентанов в циклогексан или его алкилзамещенные объясняется главным образом тем, что эти последние являются промежуточными соединениями при производстве соответствующих ароматических углеводородов посредством дегидрогенизации. Сам циклогексан также является сырьем для получения адипиновой кислоты для производства иейлопа. Помимо этой практической стороны дела, изучение подобных реакций может пролить свет на поведение углеводородов и помочь в разъяснении механизма каталитических реакций. [c.14]

    При применении безградиентных реакторов поддерживать изотермический режим несложно, удается итйежать погрешностей в измерениях, обусловленных осевой диффузией в случае гетерогенных каталитических реакций обеспечивается возможность сильно ослабить или исключить влияние процессов диффузии в зерне катализатора. Поэтому для точного исследования кинетики процесса безградиентные реакторы, как правило, предпочтительнее. [c.36]

    Дальнейшее развитие учения о катализе шло как по пути накопления экспериментальных данных, разработки способов приготовления активных катализаторов, открытия и изучения новых каталитических процессов, внедрения катализа в химическую промышленность, так и по пути развития теории гетерогенного катализа. Однако успехи теоретиков были значительно более скромными, чем успехи экспериментаторов. И это не случайно. Хотя принципиальной разницы между каталитическими и некаталитическими процессами нет, и те и другие подчиняются основным законам химической кинетики, в обоих случаях система реагирующих веществ проходит через некоторое особое, обладающее повышенной энергией активное состояние, в гетерогенных каталитических реакциях наблюдаются специфические особенности. Прежде всего появляется твердое тело, от свойств и состояния которого существенно зависят все явления в целом. Поэтому не случайно, что успехи теории гетерогенного катализа неразрывно связаны с развитием теории твердого тела. Поскольку процесс идет иа поверхности, знание строения поверхности катализатора оказывается решающим для развития теории катализа. Отсюда вытекает тесна я связь развития теории катализа с развитием экспериментального и теоретического изучения адсорбционных явлений. Сложность кетероген-ных процессов, присущие им специфические черты, приводят к тому, что теоретические исследования в этой области не завершилась еще построением теоретических концепций, на базе которых можно было бы обобщить имеющийся фактический ма-териал. Пока можно только говорить о наличии нескольких теорий, в первом приближении обобщающих те или иные экс- периментальные данные. [c.294]

    Особенно сложно получать надежные кинетические данные для процессов с двухфазными (или большим количеством фаз) потоками, а также для реакций с гетерогенными катализаторами. Здесь нужно убедиться, что исследование кинетики ведется в условии отсутствия существенных диффузионных помех. Применяемые при этом приемы будут описаны ниже. Не менее существенным является также вопрос об измененпи соотношения объемов фаз в ходе реакции вследствие изменения условий фазового равновесия. Достаточно удовлетворительное решение этой задачи удается не всегда. Далее также будут изложены некоторые соображения по этому вопросу. Наконец, для гетерогенно-каталитических реакций помощь в расшифровке кинетики могут оказать специальные электрохимические измерения. Подробно они описаны в монографии [3]. Здесь будет приведено их краткое изложение. [c.65]

    В ранних работах [16 17] для изучения кинетики изомеризации н-олефинов применяли статический метод. Позднее стали использовать проточный [18] и проточно-циркуляционный [19] методы. Последние два метода наиболее эффективны тогда, когда время реакции невелико, когда возникновение побочных продуктов зависит от времени контакта реагентов с катализатором и когда необходимо ограничить реакционную зону только длиной слоя катализатора. Большинство непрерывных промышленных процессов осуществляется в контактных системах проточного типа. Однако для исследования реакций всеми перечисленными методами необходимы большие количества реагентов, что не всегда удобно в лабораторной практике. В последние годы для изучения ряда каталитических реакций с успехом применяются импульсные установки [20—23]. Преимуществами этих установок являются использование небольших количеств катализатора и исследуемь1х веществ, а также малое время контакта катализатора с углеводородами. Кроме того, импульсный метод позволяет проводить опыты при высокой активности свежего катализатора. [c.45]

    Отметим, что исследование кинетики сложных каталитических реакций чаще всего может дать основания лишь для неоднозначных соображений о ее механизме, но, не будучи связано с более детальными физическими и физико-химическими исследованиями, не может выявить характера элементарных стадий процесса. С другой стороны, знание кинетики реакций, какой бы механизм ни лежал в их основе, является необходимой предпосылкой всех расчетов промышленных процессов. Для расчетных целей безразлично, ootBOT TByeT ли форма кинетических уравнений детальному механизму каталитического процесса. Зависимость скорости реакций от концентраций реагентов и температуры часто представляют (в некоторой ограниченной области) выражениями типа (П.6) — (П.8) с эмпирическими коэффициентами при этом в формулу (II.8) должны также входить концентрации веществ, тормозящих реакцию, с отрицательными порядками a . Для приближенного формального описания кинетики реакций в широком интервале изменения значений переменных более пригодны уравнения лангмюровского типа. [c.96]

    Несмотря на большое теоретическое и практическое значение гомогенно-каталитических реакций и на значительное число работ, посвященных исследованию этих реакций, их химический механизм изучен еще очень мало. По-видимому, наиболее распространенным типом гомогенно-катали-ической реакции является такая неакния. течение которой, как уже отме- [c.17]


Библиография для Каталитические реакции, исследование: [c.4]    [c.187]    [c.187]    [c.187]    [c.78]   
Смотреть страницы где упоминается термин Каталитические реакции, исследование: [c.280]    [c.47]    [c.713]    [c.14]    [c.359]    [c.200]   
Газо-жидкостная хроматография (1966) -- [ c.394 ]

Газо-жидкостная хроматография (1966) -- [ c.394 ]




ПОИСК





Смотрите так же термины и статьи:

Каталитические реакции Реакции

Каталитические реакции Реакции каталитические

Реакции каталитические

Реакция исследование



© 2025 chem21.info Реклама на сайте