Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Общий механизм реакций карбонильных соединений с основаниями

    Общий механизм реакций карбонильных соединений с основаниями [c.246]

    Если отрыв нуклеофила происходит быстрее, чем первоначально образующееся тетраэдрическое промежуточное соединение стабилизируется за счет переноса протона с участием растворителя, то имеет место катализ общими кислотами или основаниями. О таких реакциях, в которых образование устойчивого продукта возможно только при наличии переноса протона, говорят, что они протекают по механизму принудительного общего кислотно-основного катализа. Примером реакции e-s-типа является присоединение тиоловых анионов к карбонильной группе [уравнение (5.41)]. Скорость, с которой осуществляется стабилизация анионного тетраэдрического проме- [c.118]


    Указанные особенности строения лигандов и комплексов во многом определяют как химические свойства, так и методы получения этих веществ Обычно применяемая для синтеза многих азотсодержащих макроциклов конденсация карбонильных соединений с первичными аминами или их солями (с последующим восстановлением азометиновых связей) в данном случае применяется не часто, поскольку макроциклические основания Шиффа, образованные алифатическими альдегидами и алифатическими аминами, малоустойчивы Лишь по методу Барефилда предполагается промежуточное образование макроциклического основания Шиффа, которое затем восстанавливают без выделения полупродукта Низкая устойчивость алифатических азометинов — это в первую очередь следствие большой склонности таких соединений к реакциям полимеризации, проходящим по механизму альдольной конденсации Сказывается также устранение общего стабилизирующего влияния алкильных заместителей (см. с 67) [c.37]

    Все перечисленные способы получения сводятся к использованию реакции присоединения — элиминирования, характерной для карбонильных соединений. Образование иминопроиз-водных карбонильных соединений катализируется как кислотами, так и основаниями. Этим объясняется относительное разнообразие применяемых катализаторов конденсации. На первом этапе в результате атаки неподеленной электронной пары азота по карбонильному углероду образуется тетраэдрический интермедиат. Механизм образования конечного продукта реакции определяется природой катализатора. В случае общего основного катализа происходит депротонирование атома азота, согласованное с элиминированием гидроксид-иона. При общем кислотном катализе распад интермедиата сопровождается отщеплением молекулы воды. В зависимости от pH среды меняется лимитирующая стадия процесса. В кислой среде лимитируется стадия образования интермедиата, в нейтральной и щелочной средах — распад интермедиата. При проведении конденсации в кислой среде гидразиновая группа является более реакционноспособной, по сравнению с проведением реакции в нейтральной и щелочной средах. [c.13]

    Алифатические альдегиды реагируют с веществами, содержащими активную метиленовую группу, например с производными малоновой кислоты, р-кетоэфирами и т. д., в присутствии органических оснований или аммиака или их солей. Это так называемая реакция Кневенагеля [ИЗ]. Ее продуктами являются или а,р-нена-сыщенные карбонильные соединения, или бисаддукты, образующиеся при присоединении компонента с активной метиленовой группой к первоначальному продукту по типу конденсации Михаэля в общем виде реакция представлена уравнениями (63) и (64). Наиболее широко применяемым катализатором является пиридин, обычно с добавкой пиперидина, однако достаточно часто используются также аммонийные соли, такие как ацетаты аммония или пиперидиния. При этом могут осуществляться несколько различных механизмов реакции. В ряде случаев, вероятно, протекает взаимодействие альдегида с имином-катализатором, ведущее к образованию имина или иминиевой соли, и эти вещества, а не свободный альдегид, реагируют затем с анионной формой вещества с активной метиленовой группой, образующейся при депротонировании под действием амина. Последующее отщепление воды или амина генерирует сопряженную олефиновую систему. [c.515]


    При определенных экспериментальных условиях первичные амины представляют собой чрезвычайно эффективные катализаторы образования оксимов и семикарбазонов. Например, в реакции образования семикарбазона и-хлорбензальдегида при pH от 2,5 до 3,5 каталитическая активность анилина и п-хлоранилина на несколько порядков выше, чем М-метиланили-на или хлоруксусной кислоты [51 ]. В этом случае мы имеем дело не с общим кислотным, а с нуклеофильным катализом, который осуществляется путем образования ковалентной связи между катализатором и субстратом. Суммарная реакция, механизм которой представлен уравнениями (41) и (42), протекает через стадию образования шиффова основания из карбонильного соединения и амина, катализирующего данный процесс. [c.372]

    При катализе протонными кислотами редко возникают какие-либо сомнения о стадиях протекания реакции, хотя довольно сложно решить вопрос о том, какая из них является лимитирующей. С другой стороны, в случае катализа основаниями часто трудно сделать выбор между механизмами общего основного и нуклеофильного катализа. Это связано с тем, что основание всегда обладает свободной парой электронов и может участвовать в реакции, присоединяясь к электро-фильному центру субстрата, а не отрывая протон. Отмеченная неопределенность особенно свойственна реавдиям карбонильных соединений, например реакциям с участием эфиров. Выбор между двумя механизмами может оказаться неочевидным, причем часто основанным на аргументах, связанных с эффектом изменения структуры катализатора или субстрата. [c.190]

    Основываясь на своих собственных исследованиях модельных соединений, Бреслоу предложил второй механизм гидролиза пептидов карбоксипептидазой А, не включающий образования ацил-ферментного промежуточного соединения [221, 222]. По существу, в гидролизе пептидной связи участвуют ион цинка, карбоксильный ион и гидроксильная группа тирозина. 2п(П) ио-прежнему играет роль кислоты Льюиса, координируя карбонильный кислород, а карбоксильная группа действует скорее как общее основание. Это мож но утверждать, поскольку в присутствии СН3ОН (вместо воды) метанолиз пептидного субстрата не наблюдался из-за неблагоприятной константы равновесия. Таким образом, фермент не может включать метанол в переходное состояние (в реакции, катализируемой в обоих направлениях) ни в случае эфирных, ни в случае пептидных субстратов. Это означает, что для протекания гидролиза необходимо удаление в переходном состоянии обоих протонов молекулы воды. [c.348]


Смотреть страницы где упоминается термин Общий механизм реакций карбонильных соединений с основаниями: [c.132]    [c.220]    [c.19]    [c.150]    [c.116]    [c.209]    [c.382]   
Смотреть главы в:

Введение в электронную теорию органических реакций -> Общий механизм реакций карбонильных соединений с основаниями




ПОИСК





Смотрите так же термины и статьи:

Карбонильные соединения

Механизмы карбонильных соединени

Общий ход реакции и ее механизм

Реакции карбонильных соединений с основаниями. Общие механизмы. Кислотно-основный катализ

Реакции общие

Соединения механизм



© 2025 chem21.info Реклама на сайте