Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Механизмы карбонильных соединени

    Механизм действия катализаторов этого типа изучали по конверсии о-водорода в п-водород, по поведению радиоактивной окиси углерода и спиртов (с изотопом С ), карбидов и карбонильных соединений металлов и т. д. Анализ их структуры был проведен при помощи новейших методов (электронномикроскопического, адсорбционного и т. д.). Состав продуктов реакции определяют обычно при помощи масс-спектрографа. [c.254]


    Гидропероксиды прн разложении под действием повышенной температуры или катализаторов окисления действительно дают спирты и карбонильные соединения. Это разложение может иметь молекулярный механизм, однако в развившемся процессе окисления продукты образуются главным образом цепным путем. При получении спиртов звено цепи таково  [c.358]

    Выход пинакона в значительной степени зависит от природы карбонильного соединения. Ароматические альдегиды и кетоны образуют пинаконы с высоким выходом. Алифатические кетоны (исключая ацетон) образуют пинаконы лишь в незначительных количествах. Различие в выходах димерных продуктов при восстановлении алифатических и ароматических кетонов обусловлено тем, что механизм их восстановления различен. [c.219]

    Учитывая это, можно утверждать, что такие реакции, как присоединение галогеноводорода и воды к а, -непредельным карбонильным соединениям, протекают по механизму, отличному от рассмотренных ранее. [c.81]

    Предполагаемый механизм взаимодействия реактивов Гриньяра с карбонильными соединениями подтверждается результатами кинетических измерений. Оказалось, что скорость первой стадии реакции высока и имеет первый порядок по кетону и второй порядок по димеру реактива Гриньяра. Однако после того как половина магнийорганического соединения вступит в реакцию, скорость реакции становится значительно ниже первоначальной. [c.279]

    Механизм гидратации ацетиленовых соединений еще окончательно не выяснен. По-видимому, первичными продуктами являются ено-лы, которые немедленно превращаются в карбонильные соединения  [c.160]

    Механизм взаимодействия реактивов Гриньяра с карбонильными соединениями. Обычно взаимодействие магнийорганических соединений изображается как двухстадийный процесс. Первая стадия заключается в координации атома магния с атомом кислорода карбо- [c.214]

    Иногда для реакций магнийорганических соединений с карбонильными соединениями предлагается механизм, включающий образование шестичленного квазициклического промежуточного комплекса из одной молекулы карбонильного соединения и двух молекул магнийорганического реагента. [c.215]

    В настоящее время предложен механизм этой реакции, включающий образование промежуточного шестичленного комплекса из одной молекулы магнийорганического соединения и молекулы карбонильного соединения  [c.215]


    В обоих случаях лимитирующей по скорости может быть только первая стадия, так как вторая протекает мгновенно, будучи реакцией между ионами. В случае механизма (А) электронодонорные заместители, повышающие основность карбонильного соединения, способствовали бы ускорению реакции, т. е. значение р было бы отрицательным. Наоборот, осуществление механизма (Б) означало бы ускорение реакции электроноакцепторными заместителями, т. е. р было бы положительным. [c.172]

    Альдольную конденсацию можно осуществить и с помощью сильных кислот, но тогда она протекает по совершенно другому механизму. На первом этапе образуется енольная форма карбонильного соединения. В случае ацетона это выглядит следующим образом  [c.161]

    Приведите общую схему механизма реакций нуклеофильного присоединения по карбонильной группе и дайте ответы на следующие вопросы 1) увеличивается или уменьшается реакционная способность карбонильных соединений в следующих рядах /О /О [c.82]

    В сильнокислой среде (приблизительно в 10 раз более кислой, чем при реакции конденсации) первоначально происходит протонирование группы С = Н. В результате этого равновесие последовательных реакций (все стадии механизма обратимы) сдвигается в сторону образования карбонильного соединения. [c.120]

    МЕХАНИЗМЫ РЕАКЦИЙ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ [c.679]

    В целом, механизм присоединения циановодорода К.1К К карбонильным соединениям таков  [c.680]

    Другие методы восстановления карбонильных соединений (комплексными гидридами, по Мейервейну — Понндорфу и др.) будут рассмотрены позже иа основе других механизмов реакций. [c.113]

    Механизм восстановления металлами или каталитического гидрирования молекулярным водородом аналогичен восстановлению-карбонильных соединений (ср. разд. Г, 7.1.8). [c.222]

    Очевидно, что последовательность и согласованность этих стадий будет зависеть от таких факторов, как природа субстрата, гомогенность и восстановительный потенциал среды, а также от наличия и природы источника протона. Детальное обсуждение механизма приводится ниже на примере субстратов, для восстановления которых наиболее часто используют систему металл - жидкий аммиак, а именно ароматических соединений, а, /3-непредель-ных карбонильных соединений и алкинов. Во всех случаях реакция восстановления становится возможной благодаря способности аммиака как диполярного и мощного ионизирующего растворителя стабилизировать за счет сольватации возникающие анион-радикалы и анионы. [c.170]

    Присоединение дикетена к карбонильным соединениям в толуоле катализируется К4МХ в присутствии твердого К2СО3. Предполагается следующий механизм этой реакции [1766]  [c.236]

    Тетрахлор- и тетрабромспиросоединения получаются из некоторых непредельных стероидных кетонов [644], однако более простые непредельные карбонильные соединения дают в основном продукты осмоления. Механизм образования Н первоначально включает нормальное присоединение дихлоркарбена [680]. Затем в сильноосновной среде полученные аддукты (I) дегидрохлорируются с образованием К. Известно, что эфиры циклопропенкарбоповых кислот, подобные К, мгновенно присоединяют любой доступный нуклеофил. Так, присоединение гидроксил-иона ведет к образованию побочного продукта (L) — полуэфира замещенной янтарной кислоты. Альтернативное присоединение трихлорметильного аниона приводит к образова- [c.330]

    Кроме свободнорадикального пути расш,епления алкилароматические гидропероксиды способны к распаду под влиянием кислотных и щелочных катализаторов. В присутствии уже небольшого количества сильной кислоты (например, 0,1% Н2804) гидропероксиды распадаются с образованием фенолов и карбонильных соединений. Реакция протекает по сложному механизму ионного типа с промежуточным возникновением положительных ионов  [c.372]

    Реакции гидрирования карбонильных соединений и дегидрирования спиртов имеют некоторые особенности. Для них возможны карбонильный механизм с хемосорбцией по С—0-связи, а также енольпый механизм, когда реакция протекает по С—С-связи и включагт стадию енолизации карбонильного соединения. Опыты с мечеными веществами показали, что при низкой температуре преобладает первый механизм, а при более высокой — второй  [c.467]

    Следует также отметить, что Мейзенгеймор изучал механизм гриньярова синтеза почти исключительно иа неспособных к эно-лизации (бензойный, коричный, кротоновый альдегиды) и лишь вскользь на поддающихся ей карбонильных соединениях. При действии Mg-бромэтила па ацетон, даже после 3-часового кипячения в бензоле (по отгонке эфира), он не смог выделить изопропилового спирта. Между тем, как известно Сабатье и Мейль [5], даже в обычных температурных условиях, в среде эфира, [c.222]

    Данные анализа и исследования, произведенные Рихе и Гитцем [24], а также Фуимото [25], позволили детализировать механизм образования и распада перекисей следующими гипотетическими схемами (предусматривающими образование не только карбонильных соединений, но также спиртов и кио.пот)  [c.345]


    Пропаргилбромид ВгСНгС СН также реагирует с цинком и карбонильными соединениями по механизму реакции Реформатского. Этот метод часто применяют для введения пропаргильного остатка в другие соединения. [c.193]

    В настоящее время механизм реакции Реформатского дискутируется. Появились факты, свидетельствующие о том, что при действии цинка на эфир а-галогензамещенной кислоты образуется енолят, который затем реагируег с карбонильным соединением через шестичленное переходное состояние  [c.294]

    При димеризации триметилэтилена под действием серной кислоты образуется побочный продукт углеводород С10Н20, который при озонидном расщеплении дает бутанон и карбонильное соединение с шестью атомами углерода. Образование побочного продукта объясняется тем, что серная кислота вызвала изменение положения двойной связи в триметилэтилене. Каким образом серная кислота могла вызвать изменение положения двойной связи Каково строение получившегося при этом углеводорода и каков механизм его димеризации  [c.27]

    К области реакции альдегидов и кетонов с криптооснованиямн относятся так называемые реакции с участием гидрид-ионов . Такой механизм приписывается, например, восстановлению карбонильных соединений комплексными гидридами металлов  [c.129]

    Электронные представления об ацетиленовой связи и, < р-гибридизации. Кислотность ацетиленового атома водорода. Реакция Кучерова. Механизм гидратации тройной связи. Правило Марковннкова. Реакция присоединения ацетилена к карбонильным соединениям. Димеризация ацетилена. Спектры (ПМР, ИК, УФ) ацетиленов. [c.249]

    При более высокой температуре реакция R сOj становится обратимой и окисление идет с образованием олефинов и HOj-. Все эти области в координатах Т — Dr h показаны на рис. 21. Видно, что область цепного окисления с образованием ROH представляет собой остров (II), окруженный областями, где окисление идет в гидропероксид (I), карбонильные соединения (III) и нецепным путем. Прочность С — Н-связи, температура и концентрация углеводорода однозначно определяют механизм окисления. [c.218]

    Образуются, таким образом, четыре вакантные sp -гибридиые орбитали. Появляется возможность возникновения о-связи по донорно-акцепторному механизму за счет перекрывания гибридных валентных орбиталей возбужденного атома -металла, в нашем случае никеля, с неподеленной парой электронов оксида [СО]— [М—СО). Атом d-металла имеет здесь нулевую степень окисления — М(0). Карбонильные соединения диамагнитны, следовааельно, при их образовании происходит спаривание валентных электроне (-элемента (см. 9.3). [c.399]

    Определение структурной формулы. Определить структуру соединения по его масс-спектру не просто, поскольку имеющиеся пики вначале относят к определенным осколкам и только после этого найденные структурные элементы объединяют в структуру молекулы. Появление определенных пиков обусловливается упомянутым выше преобладающим механизмом распада и тем самым молекулой в целом. Несмотря на то что отдельные структурные элементы и оказывают решающее влияние на реакции распада, появление в спектре пиков с соответствующими массами не является безусловным. Так, совершенно неверно констатировать наличие карбонильного соединения по одному пику с массовым числом 28 (С0+). Карбонильные соединения распадаются преимущественно по ониевому механизму, и поэтому в спектре прежде всего следует ожидать появления пиков, соответствующих ониевым ионам. [c.291]

    Реакции 11-24—11-28 представляют собой введение группы СН22, где 2 — галоген, гидрокси-, амино- или алкилтиогруппа. Все это реакции Фриделя — Крафтса с участием альдегидов и кетонов, а по отношению к карбонильному соединению — присоединение по двойной связи С = 0. Они идут по механизму, который будет обсужден в т. 3, гл. 16. [c.366]

    Действительно, илиды, содержащие стабилизирующие группы или полученные из триалкилфосфинов, как правило, дают транс-олефины [513], а илиды, полученные из трпарплфосфинов и не содержащие стабилизирующих групп, часто приводят к цис-олефину или к смеси цис- и трамс-олефинов [513]. Одно из объяснений этого явления [506] основывается на упоминавшемся выше предположении, что в таких случаях стадии 1 и 2 механизма осуществляются одновременно. Если это так, то реакция илида с карбонильным соединением представляет собой [2+2]-циклоприсоединение, которое, для того чтобы быть согласованным, должно следовать [ 25-4-п2а]-пути. Как уже рассматривалось при описании реакции 15-48, такой механизм приводит к образованию стерически более затрудненного продукта, в данном случае ц с-олефина. Объяснить образование ч с-олефинов и смесей цис- и граис-изомеров даже в реакциях, протекающих через образование в качестве интермедиата бетаина, можно, если предположить, что в таких реакциях стадия 1 необратима. При этом конфигурация получающегося диастереомера определяется взаимным расположением илида и карбонильного соединения перед реакцией. После образования бетаина стереохимия олефина определяется лишь тем фактом, что элиминирование— это с н-процесс. Две обсуждающиеся возможности можно проиллюстрировать следующей схемой  [c.404]

    По-видимому, наиболее естественное взаимное расположение илида и карбонильного соединения такое, которое приводит к цис-изомерам, вероятно, из-за стерических препятствий, обусловленных наличием трех арильных групп у атома фосфора [514]. Возможно также, что цис-язошеры вообще не образуются в реакции, включающей в качестве интермедиата бетаин, и единственный путь их образования — это [ 28+ 2а]-механизм. [c.405]

    ВНОВЬ образующегося олефина [432]. Аналогичным образом реагируют р-гидроксиацетилены, давая соответствующие аллены и карбонильные соединения [433]. Реакция идет по тому же механизму, несмотря на линейную геометрию тройной связи. [c.83]

    При реакции карбонильных соединений с цианидами щелочных металлов или с циановодородом образуются циангид-рины. Эти реакции протекают по механизму нуклеофильного присоединения, причем сначала цианид-ион СМ присоединя- [c.159]

    Б фотоинициируемых операциях отверждения почти всегда используется полимеризация, не сопровождающаяся выделением низкомолекулярных побочных продуктов. Большинство приложений фотоинициируемой полимеризации основано на механизме генерации свободных радикалов при этом в качестве мономеров обычно выступают эфиры акриловой кислоты (СН2 = СНС00К). Акриловые группы имеются в смолах, обычно применяемых для нанесения покрытий (эпоксиды, уретаны и полиэфиры). Полифункциональные растворители, получающиеся в результате реакции полиолов с акриловой кислотой, ускоряют отверждение и увеличивают число сшивок в покрытии. Коммерчески оправданными фотоинициаторами обычно служат ароматические карбонильные соединения, спектр поглощения которых хорошо согласуется со спектром испускаемого света доступных источников УФ-излучения. Замещенные ацето-феноны подвергаются а-расщеплению (реакция Норриша типа I см. разд. 3.6) с выделением инициирующих радикалов. [c.259]

    Как показано в общем виде на схеме 2.154, синтетический результат перегруппировки Кляйзена сводится к введению алли тьного фрагмента по а-атому исходного карбонильного соединения через промежуточную стадию превращения кетона или aJTЬдeгш a в аллильный эфир енола 480 [40Ь], Формально тот же результат (образование у,5-непредельного карбонильного производного 481) может бьггь получен по уже известной нам реакции aJ килиpo-вания ионных енолятов с помощью аллильных электрофилов. Однако как требования к природе субстратов, используемых в этих методах, так и механизм и условия проведения показанных реакций, резко различны, что и [c.269]

    Гидрокси-перегруппировка Коупа относится к тому же типу перициклических [3.3] сигматропных перегруппировок [40h], и се механизм также предполагает образование квазицикличсского шестичленного переходного состояния. Это превращение является общим методом трансформации 3-гидроксизамещснных гексадиенов-1,5 500 в 6,6-ненасышенные карбонильные соединения типа 501 (схема 2.157). Одно из достоинств этого спосо- [c.273]

    Впоследствии было установлено (32, 129), что фуран и сильван в этих условиях, а также с другими кислотными катализаторами подобным же образом взаимодействуют и с метилвинилкетоном, фенилвинилкетоном и кротоновым альдегидом. Реакция происходит только при наличии свободного а-положения в цикле фурана. Механизм этой реакции полностью не выяснен, но можно полагать, что он связан с перемещением водорода цикла к а-углеродному атому а, -непредельного карбонильного соединения и присоединением последнего за счет -углеродного атома к циклу фурана. Это и даёт основание относить реакцию к присоединительно-заместительным, Метилолирование фурановых соединений также принадлежит к реакциям этого типа. В фурановом ряду даже этилфуроат, т. е. производное фурана с отрицательным заместителем, способен взаимодействовать с формальдегидом при 0° по схеме (130)  [c.17]

    При низких концентрациях гидропероксидов в растворе преобладает их распад по кинетическому закону мономолекулярных реакций, тогда как с ростом концентрации превалирует бимолекулярный по гидропероксиду механизм распада. Влияние добавок спирта на скорость термолиза гидропероксида в зависимости от концентрации спирта проходит через максимум, что было показано при добавлении циклогексана в раствор гидропероксида циклогексила в хлорбензоле [5,41]. Торможение при больших концентрациях спирта связывают с образованием тройных комплексов состава ROOH 2R0H, которые медленнее распадаются на радикалы. Наличие карбонильных соединений в растворе наряду с ассо-циатами приводит к образованию 1 -гидроксипероксидов [c.237]

    Термолиз первичных пероксиацетатов (н-бутирил- и изобутирил-) и вторичных пероксиацетатов (в/ио/ -бутирил- и циклогексил-) в жидкой фазе ведет в результате согласованного шестицентрового механизма распада к карбоновой кислоте и карбонильному соединению. Те же пероксиэфиры при термическом распаде в газовой фазе образуют продукты, соответствующие простому разложению с первоначальным разрывом одной О-О-связи. Таким образом, растворитель способствует реализа- [c.268]


Смотреть страницы где упоминается термин Механизмы карбонильных соединени: [c.149]    [c.250]    [c.216]    [c.220]    [c.425]    [c.538]    [c.122]   
Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.767 , c.779 , c.780 ]




ПОИСК





Смотрите так же термины и статьи:

Донорно-акцепторный механизм карбонильных соединений

Карбонильные соединения

Карбонильные соединения механизм

Механизм изомерных превращений карбонильных соединений

Механизмы конденсации карбонильных соединений

Механизмы реакций карбонильных соединений

Общий механизм реакций карбонильных соединений с основаниями

Реакции карбонильных соединений с основаниями. Общие механизмы. Кислотно-основный катализ

Соединения механизм



© 2025 chem21.info Реклама на сайте