Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полярографическое определение железа, меди и висмута

    Вольтамперометрический метод применяют для определения многих металлов. Кадмий, кобальт, медь, свинец, марганец, никель, олово, цинк, железо, висмут, уран, ванадий и многие другие могут быть определены в рудах, концентратах, сплавах и иных природных и технических объектах. При достаточно различающихся потенциалах полуволны (Д /, > 0,10 В) возможно количественное определение нескольких элементов без предварительного разделения. Например, в аммиачном буферном растворе можно полярографировать смесь кадмия ( = 0,81В) и никеля ( /,= — 1,10 В). Существенное практическое значение имеет вольтамперометрическое определение хромат-, иодат-, мо-либдат-ионов и некоторых других, а также многих органических соединений альдегидов, кетонов, азо- и нитросоединений и т. д. Широко используют полярографический метод для анализа биологически важных материалов крови, сыворотки и т. д. [c.236]


    С. Ю. Файнберг. Н. А. Филиппова. Анализ руд цветных металлов. Металлургиздат, 1963 (832 стр.). В руководстве описаны практические методы химического, полумикрохимического и физико-химического анализов руд цветных металлов и продуктов их обогащения. Первый раздел содержит краткие сведения о физико-химических и полумикрохимических методах анализа. Во втором разделе рассматриваются методы определения меди, свинца, цинка, олова, мышьяка, сурьмы, висмута, никеля, кобальта, молибдена, вольфрама, железа и серы в рудах и концентратах. Третий раздел содержит описание методов полного анализа полиметаллических руд, свинцовых, цинковых, медных, оловянных, молибденовых и вольфрамовых руд и концентратов, а также шлаков, получаемых при выплавке цветных металлов. В четвертом разделе описаны полярографические методы анализа цветных металлов. Последний раздел посвящен фазовому анализу соединений меди, цинка, сурьмы, никеля, молибдена и серы. [c.477]

    Наиболее часто применяются комп-лексоны, преимущественно комплексен III. Комплексон III образует со многими ионами металлов малодиссоциирующие комплексные соединения. Титруют по предельному току определяемого иона. Определяются висмут, железо, никель, свинец,-цинк, медь, марганец, кобальт, ртуть, кадмий, индий. Устойчивость комплексов этих металлов с комплексоном III различна, поэтому титруют при определенной кислотности среды. Амперометрическое титрование возможно, для определения полярографически неактивных веществ, когда ни титруемый ион, ни реагент не дают диффузионный ток. Для этого в анализируемый раствор вводят специальный ион-индикатор, способный к электродной реакции. Индикатор реагирует с реагентом после того, как прореагируют определяемые ионы. Титрование в этом случае проводят при потенциале, соответствующем предельному току индикатора. Например, при амперометрическом титровании алюминия раствором фторида в качестве индикатора применяют раствор соли железа [c.165]

    Интересный способ определения содержания кобальта в солях никеля состоит в предварительном окислении o + до Со " перборатом натрия в аммиачном буферном растворе [16]. После разрушения избытка окислителя сульфатом гидроксиламина раствор полярографируют в пределах от —0,2 до —0,8 в. Потенциал полуволны Со + равен —0,4 в. Определению не мешают мышьяк, кадмий, сурьма, олово, цинк и, если находятся в умеренных количествах, висмут, медь, железо, марганец, молибден. Свинец н хром, присутствующие в больших количествах, удаляют путем осаждения хлоридом бария или сульфатом натрия. При содержании кобальта около 0,1% ошибка определения не превышает 2,6%. В 0,01 М растворе триэтаноламина и 0,1 М растворе КОН было определено содержание свинца и железа в пергидроле и меди, свинца и железа в плавиковой кислоте и фториде аммония в количестве 1.10 —5.10 % [17]. В растворе фторидов проводилось также определение олова, основанное на получении его комплексных ионов [18]. Разработан метод определения растворимой окиси кремния в уранилнитрате, основанный на полярографическом восстановлении кремнемолибденового комплекса [19]. Можно определить 2 мкг ЗЮг с точностью до 10%. Мешают ванадий и железо. [c.83]


    Как известно, для определения малых количеств железа, меди, кобальта, свинца, цинка, висмута, олова и других элементов применяют колориметрические, экстракционно-фотометрические, полярографические методы, а в качестве осадителей металлов используют сероводород, аммиак и др. Однако применение перечисленных методов увеличивает продолжительность анализа и не всегда обеспечивает полноту разделения элементов. [c.270]

    Полярографическое определение железа, меди, висмута и свинца [c.230]

    Полярографическое определение железа, меди и висмута [c.153]

    Способ устранить влияние железа, меди, висмута и мышьяка на полярографическое определение свинца описан выше (см. стр. 296). [c.301]

    В указанных условиях опыта определению молибдена не мешает присутствие вольфрама, никеля, кобальта, цинка и марганца, которые полярографически не проявляются. Мешают висмут, таллий и в большом избытке свинец, железо и медь. На поляро-граммах 2—4 изображены, во-первых, отдельно волны молибдена, во-вторых, волны молибдена в присутствии вольфрама и свинца. [c.225]

    Определение ионов металлов. Благодаря соответствующему выбору фонового электролита, pH и лигандов практически любой металл может быть восстановлен на ртутном капающем электроде до амальгамы или до растворимого иона с более низкой степенью окисления. Во многих случаях получают полярографические волны, пригодные для количественного определения этих веществ. Такие двухвалентные катионы, как кадмий, кобальт, медь, свинец, марганец, никель, олово и цинк, можно определить во многих различных комплексующих и некомплексующих средах. Ионы щелочно-земельных элементов — бария, кальция, магния и стронция — дают хорошо выраженные полярографические волны при приблизительно —2,0 В относительно Нас. КЭ в растворах, содержащих иодид тетраэтиламмония в качестве фонового электролита. Цезий, литий, калий, рубидий и натрий восстанавливаются между —2,1 и —2,3 В отн. Нас. КЭ в водной и спиртовой среде гидроксида тетраалкиламмония. Опубликованы данные полярографического поведения трехзарядных ионов алюминия, висмута, хрома, европия, галлия, золота, индия, железа, самария, урана, ванадия и иттербия в различных растворах фоновых электролитов. [c.457]

    Полярографическое разделение и определение этих элементов — главным образом меди, железа и висмута — представляет значительные трудности даже при благоприятных отношениях их концентраций вследствие того, что они восстанавливаются в непосредственной близости к началу полярографического спектра. Прибавление комплексона существенно изменяет их потенциалы выделения, поэтому разделение полярографических волн этих элементов становится вполне надежным. Этот факт был использован в практической полярографии некоторыми авторами. Ниже приводятся три примера, значительно различающихся по способу проведения. [c.230]

    При полярографическом определении свинца в кислых растворах мешают олово, мышьяк (П1) и таллий, потенциалы восстановления которых совпадают с потенциалом восстановления свинца, а также большие количества железа (П1), медь, сурьма, висмут, вольфрам и молибден, которые восстанавливаются на ртутном капающем катоде при более положительных потенциалах. [c.258]

    Полярографическому определению висмута мешают многие элементы (железо, медь, свинец, олово, мышьяк, сурьма и др.), особенно в том случае, если их содержание больше содержания висмута, как это обычно бывает при анализе полиметаллических руд или других природных материалов. [c.19]

    Ме од рекомендуется при определении висмута в разнообразном минеральном сырье, особенно богатом железом, медью и другими элементами, которые мешают его колориметрическому определению обычными методами. Полярографический метод применим для определения висмута при его содержании от 0,005 до 5%. При содержании висмута от 0,002 до 0,01% анализ после анионного отделения висмута можно закончить колориметрически с тиомочевиной (см. дополнение). [c.21]

    З-Оксн-4-карбоксифенилиминодиуксусная кислота предложена ИРЕА в качестве нового комплексона [1]. Это соединение образует ряд прочных комплексов с металлами и представляет интерес для полярографического определения железа в присутствии свинца и меди, а также меди, свинца, висмута и кадмия в присутствии избытка таллия. [c.70]

    В неорганическом анализе широко применяют концентрирование в статических условиях. Сорбцию микроколичеств сурьмы (V) из разбавленных растворов азотной кислоты оксидом алюминия ускоряют облучением растворов ультразвуком [647]. Гидратированный оксид железа (III) используют для концентрирования до 10 г/г хрома и ванадия при анализе алюминия высокой чистоты методом кулонометрического титрования [648]. Микроколичества фосфат- и арсенат-ионов количественно сорбируют на порошке оксида цинка. Затем сорбент растворяют в 6 М хлороводородной кислоте [649]. Метод использован при спектрофотометрическом определении фосфора в воде, а также фосфора и мышьяка в свинце высокой чистоты. При анализе меди 10 г/г висмута селективно выделяют на гидратированном оксиде свинца, который затем растворяют в растворе оксалата натрия и определяют висмут полярографически [650]. Микроколичества мышьяка и фосфора из водных растворов концентрируют на прокаленном сульфате бария или стронция [651, 652]. При спектрофотометрическом определении п -10 г/г Se в меди селен сорбируют на сульфате свинца, который затем растворяют в растворе тартрата аммония и анализируют [397]. При определении до 0,01 мкг/л цезия в воде его сорбируют на фосформолибдате аммония. Затем сорбент растворяют в растворе гидроксида натрия и экстрагируют тетрафенилборатом натрия в смеси метилизобутилкетона и циклогексана. Цезий определяют методом фотометрии пламени [653]. [c.101]



Смотреть страницы где упоминается термин Полярографическое определение железа, меди и висмута: [c.205]    [c.315]   
Смотреть главы в:

Комплексоны в химическом анализе -> Полярографическое определение железа, меди и висмута




ПОИСК





Смотрите так же термины и статьи:

Висмут определение полярографическое

Железо определение полярографическое

Медь, определение

Определение железа, меди и висмута



© 2025 chem21.info Реклама на сайте