Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пиролиз бензина

Рис. 7.10. Принципиальная схема установки пиролиза бензина I— сырье II— конденсат III— газы пиролиза IV— бензиновая фракция (н.к.—150 С) V— легкая смола VI— тяжелая смола VII— водяной пар Рис. 7.10. <a href="/info/844583">Принципиальная схема установки</a> <a href="/info/66465">пиролиза бензина</a> I— сырье II— конденсат III— <a href="/info/26510">газы пиролиза</a> IV— <a href="/info/411310">бензиновая фракция</a> (н.к.—150 С) V— <a href="/info/322717">легкая смола</a> VI— <a href="/info/317795">тяжелая смола</a> VII— водяной пар

Рис. VII- . Схема топливной системы с акустическими горелками типа АГГ-2 печи пиролиза бензина производства этилена установки ЭП-300 Рис. VII- . <a href="/info/750767">Схема топливной</a> системы с акустическими <a href="/info/1633711">горелками типа</a> АГГ-2 <a href="/info/26506">печи пиролиза</a> <a href="/info/331085">бензина производства</a> этилена установки ЭП-300
    На многих предприятиях в качестве топлива используют заводские газы — побочные продукты технологических установок. Ресурсы заводских газов зависят от глубины переработки углеводородного сырья. В производствах, процессы которых протекают под давлением водорода (риформинг, гидроочистка, изомеризация), образуются газы, не содержащие непредельных углеводородов, п их применение для сжигания в печах не вызывает затруднений. В то же время, состав побочных газов термических и некоторых каталитических процессов характеризуется заметным содержанием непредельных углеводородов. Их концентрация зависит, главным образом, от жесткости режима и в определенной степени от состава сырья и применяемых катализаторов. Входящая в состав заводских газов жирная часть (изобутан, этилены) является ценным исходным сырьем для получения высокооктанового бензина, а сухая часть (водород, метан п этан- -этилен) применяется в качестве технологического топлива. Заводские топливные газы, особенно с установок пиролиза бензина, необходимо подвергать очистке от непредельных углеводородов (фракций С4, С5 и диеновых соединений). Указанные непредельные углеводороды легко полимери-зуются и сополимеризуются с продуктами сероводородной коррозии и образуют плотные отложения в арматуре трубопроводов, в узлах газовых горелок и в капиллярах КИП. Это нарушает работу горелок или совсем выводит их из строя. [c.48]

    Одна из современных технологических схем пиролиза бензина и первичного разделения продуктов изображена на рис. 10. Пиро-ли) осуществляют в трубчатой печи /, в горелки которой подают топливо и воздух. Тепло топочных газов после их выхода из кон-вечтивной секции используют в теплообменниках 2, 3 и 4, где ос/ществляют соответственно перегрев водяного пара, идущего на пиролиз, подогрев и испарение бензина и нагревание водного кон- [c.43]

    СХЕМА РАСЧЕТА СОСТАВА ПРОДУКТОВ ПИРОЛИЗА БЕНЗИНА [c.245]


    Мюллер [19а] сопоставил между собой экстракцию и экстрактивную перегонку применительно к выделению ароматических соединений из продуктов пиролиза бензина и риформинга. Он показал, в каких случаях экстракция и экстрактивная ректификация имеют определенные преимущества одна перед другой, и привел экономические расчеты. Вопросы азеотропной и экстрактивной перегонки подробно рассмотрены в монографии Хоффмана, которая содержит многочисленные примеры расчетов для бинарных, тройных и многокомпонентных систем. [c.299]

    В СССР основным сырьем являются изобутан-изобутиленовая фракция — продукт дегидрирования изобутана — и С4-фракции, получаемые при пиролизе бензинов и сжиженных газов в производстве этилена. Первые производства. предусматривали выделение изобутилена из этих фракций серной кислотой. Однако все новые производства основаны на методе выделения изобутилена с использованием ионообменных катализаторов. [c.724]

    Для создания математического описания пиролиза бензинов также широко используются превращения групп углеводородов. Такие схемы предложены, например, в работах [43—46]. Ниже приводится схема, предложенная в нашей работе [46], поскольку ее применимость проиллюстрирована достаточно обстоятельно. [c.257]

    Таким образом, одним из факторов работоспособности центробежполитых труб в печах пиролиза бензина является сопротивляемость материала науглероживанию. [c.166]

    В последние годы интенсивно проводятся работы, направленные на увеличение выходов этилена при пиролизе бензинов путем [c.236]

    Сравнение расчетных и экспериментальных выходов продуктов пиролиза бензина в % (масс) от сырья [c.263]

    Пиролиз бензина. Последними исследованиями ряда институтов и лабораторий было показано, что наиболее ценные продукты для химической переработки получаются при пиролизе прямогонных бензиновых фракций, атакже газоконденсатного и газового бензинов. При этом, наряду с этиленом и пропиленом, получается значительное количество бутиленов, дивинила и ароматических углеводородов. Разработан процесс каталитического облагораживания легкого масла из смол пиролиза, позволяющий получить значительные количества ароматических углеводородов, кроме того, смолы пиролиза можно переработать в высококачественные полимерные соединения, находящие применение в производстве облицовочных плит и других строительных материалов. [c.314]

    ППП для расчета реакторных процессов позволяет вести расчет реакторов гидрирования ацетилена во фракцию этан—этилен, пропадиена во фракцию пропан—пропилен реакторов гидрирования поликонденсата реакторов мета-нирования окиси углерода в водороде материального и теплового балансов процессов каталитического крекинга, пиролиза бензинов, этана, газового конденсата, рафинированного бензина, вакуумного газойля, смесей различных видов сырья. [c.570]

    Предполагается, что па процесс науглероживания влияют дополнительные факторы местный перегрев труб горелками, которые при сжигании топлива концентрируют тепло радиации на локальных участках неравномерный температурный профиль пирозмеевиков и др. По результатам исследований сделан вывод о возможности применения ингибитора коксооб-разоваиия К2СО3 в печах пиролиза бензина в отсутствие технологических и температурных отклонений от регламентных параметров работы в режимах мягкого и среднего пиролиза, когда ингибитор не оказывает существенного воздействия на металл горячекатанных труб. [c.167]

    Мы планируем осуществить моделирование процессов получения нефтяного пека (Т=320-360 С, Ртд=0,1-0,2 МПа, сырье - тяжелый остаток смолы пиролиза бензина, взятый с установки РИФ-1 зоны №2 АО БНХ) и получения кокса (Т=460-490°С, Рщб=0,2-0,4 МПа, сырье - дистиллятный крекинг-остаток с зоны №4 АО БНХ) в измерительных ячейках ЭПР-спектрометра и импульсного ЯМР-спектрометра. При этом масса проб тщательно взвешивается и фиксируются доли отгона и время от начала реакции, при которых наблюдаются экстремумы и перегибы на кривых концентрации ПМЦ и времен релаксации. После этого те же самые процессы проводятся на созданной нами установке жидкофазного термолиза (рис. 12). [c.28]

    Из данных табл, 4 можно заключить, что при пиролизе бензина (в отличие от газообразных видов сырья) можно получать выход целевых продуктов в желаемых соотношениях. При пиролизе [c.20]

    В табл. 9 приведены полученные в лабораторном трубчатом реакторе данные о выходе этилена и пропилена при пиролизе бензина в зависимости от давления (температура реакции 700 С, добавка водяного пара 50%). [c.34]

    Я пиролиза бензина — узел закалки газа пиролиза 2 — колонна для охлаждения маслом з — отл и щелочной очистки газов 7 — осупштели 9 — колонна отгонки метана 9 — колонна отгонки этана i [c.371]


    Смола пиролиза также в зависимости от качества сырья содержит при пиролизе бензина до 70—75% (масс.) фракций, выкипаюших до 200°С, т. е. 10—18% (масс.) на сырье смола пиролиза газойлей тяжелее и выход бензиновых фракций составляет около 50% на смолу, или около 20% (масс.) на сырье. [c.87]

    Сырье и продукция. Сырьем для получения п- и о-ксилола служат ксилольные фракции, выделенные методами экстракции плтт ректификации из продуктов 1слтал1ггического риформинга пиролиза бензинов, диспропорционирования и трансалкилиро-вания толуола. Характеристика изомерного состава смесей ароматических углеводородов С в различных технических продуктах и структура мирового потребления отдельных изомеров приведена в табл. 2.61. В табл. 2.62 дана характеристика качества изомеров, получаемых в промышленности. [c.267]

    Печь пиролиза бензина ЭП-450 эксплуатируется со следующими показателями производительность по сырью 22 т/ч, тепловая нагрузка раднантной зоны 16,2 МВт, конвекционной зоны [c.23]

    Известно, что по мере увеличения молекулярной массы н-пара-финов от С2 до С4 выходы этилена и пропилена снижаются, однако для парафинов j—не найдено существенного влияния числа углеродных атомов исходного углеводорода на выход продуктов [47]. Экспериментальные данные по пиролизу изопарафинов показывают [48—49], что их целесообразно разделить на две группы моно- и полиметилзамещенные. Выходы этилена, пропилена и бутадиена для этих групп существенно различны. Газообразование при разложении индивидуальных ароматических углеводородов, как показано в работах [48—49], невелико. При пиролизе бензинов ароматические углеводороды слабо участвуют в реак1щях газообразования, при этом тормозящего влияния ароматических углеводородов на скорость пиролиза не обнаружено. [c.257]

    Исследования горячекатанных труб из стали 10Х23Н18, проработавших в печах пиролиза бензина примерно 2 года [c.166]

    Исходя из результатов испытаний ингибитора, сделан вывод о невозможности применения поташа в пирозмеевиках из центробежнолитой стали 45Х25Н20С2 для печей пиролиза бензина на установках ЭП-300 и ЭП-450. [c.168]

    В соответствии со сказанным выше, при пиролизе бензинов в химических превращениях участвуют по-разному следующие группы углеводородов парафины (нормальные, моно- и полиметилзамещенные) и пафтены. [c.257]

    При необходимости развить платформинг и пиролиз бензинов для получения нефтехимического сырья и высокооктанового автобензина неограниченными сырьевыми ресурсами может служить бензин подгруппы Е 3-й группы нефтяного сырья. При этом резервом подгруппы Е являются новые перспективные нефти, такие, как газовый конденсат Карадага и других месторождений, нефть о. Песчаного, карадагская парафинистая, нефть Зыря. [c.97]

    Производство дивинила по методу Лебедева в СССР заменяют производством дивинила из бутана и бутилендивинильной фракции пиролиза бензина. [c.234]

    Рис, 12. Тс,хиологнческая схема разделения газов при пиролизе бензина  [c.49]

    Изопрен из Сб-фракции пиролиза бензина извлекают только. экстрактивной дистилляцией, комбинированной с частичной отгонкой примесей и ректификацией сырой фракции, так как хемосорб-ция медиоаммиачиыми растворами н данном случае педостаточ-ио селективна. [c.55]

    Быхзд смолы, как мы видели выше, снижается при пиролизе более легкого сырья, при повышении температуры п времени контакта. Изменение в том же направлении двух последних параметров приводит к увеличению степени ароматизации смолы пиролиза, т. е. содержания в ней ароматических соединений, В результате их выход на исходное сырье при прочих равных условиях проходит через максимум в зависимости как от температуры (рис. 15), так и от В] емени контакта. На современных установках пиролиза бензина при жестком режиме достигается суммарный выход смолы 20—25Уо (масс.), причем смола содержит 85—95% ароматических веществ. При пиролизе углеводородных газов Сз—С4 вы.ход смолы примерно того же состава падает до 5—8%. В этом случае, как и для недостаточно крупных установок пиролиза бензина, становится целесообразной централизованная переработка смолы на нескольких специальных заводах. [c.61]

    Количество толуола в смоле, полученной при пиролизе бензиновых фракций, значительно больше, чем в смоле пиролиза газообразного сырья (отношение содержапня бензола к толуолу равно единице). Это дает основание считать перспективным использование смолы пиролиза бензиновых фракций (после ее соот-ветствугощей переработки) в качестве высокооктанового топлива Бензиновые фракции имеют более постоянный состав, чем смеси газов нефтепереработки в связи с этим обеспечивается более постоянный состав газов пиролиза (на выбранном режиме) и в ряде случаев большая длительность пробега печи. В табл. 4 приведены данные, полученные при пиролизе бензина (фракция н. к, — 180 °С). бутана и пропана [6], [c.20]

    Создание больших скоростей е трубах змеевика влечет за собою увеличение иерепада давления смеси на входе и выходе из радиантной камеры печи и повышение средней величины давления в зоне реакции. В современных двухпоточных печах пиролиза бензина производительностью 7—9 г/ч (по сырью) потери давления в радиантной камере колеблются от 2,8 до 3,0 ат. [c.34]

    Рис, 12. Печь пиролиза бензина производительностью 6—8 г/ч с крапамк двустороннего облучения (конструкция Гипрокаучука)  [c.42]

    Продолжительность непрерывной работы трубчатого реактора зависит и от характера распределения тепловой нагрузки вдоль реакционной части змеевика особое значение имеет величина теп лового напряжения поверхности нагрева выходных труб (в конце реакционной зоны). При высоких тепловых напряжениях в эгоп части змеевика в результате перегрева газа в пограничном слое Гудет происходить усиленное разложение углеводородов, особенно непредельных, что приведет к быстрому закоксовыванию внутренней поверхности труб. Поэтому для выходных труб змеевика рекомендуется значительно меньшая интенсивность подвода тепла, чем для других его частей. Так, если среднее тепловое напряжение поверхности нагрева радиантной части змеевика при пиролизе бензина 32 000—33 000 ккал м -ч), то для выходных труб (при диаметре труб 114 мм) оно должно быть 11 ООО—12 000 ккал/(м -ч). [c.51]


Смотреть страницы где упоминается термин Пиролиз бензина: [c.208]    [c.23]    [c.237]    [c.287]    [c.369]    [c.160]    [c.8]    [c.21]    [c.267]    [c.40]    [c.51]    [c.21]   
Начала органической химии Книга первая (1969) -- [ c.547 ]

Избранные работы по органической химии (1958) -- [ c.390 ]

Химия и технология основного органического и нефтехимического синтеза (1971) -- [ c.57 ]

Производства ацетилена (1970) -- [ c.104 , c.109 , c.110 , c.112 ]

Теория технологических процессов основного органического и нефтехимического синтеза Издание 2 (1975) -- [ c.47 , c.76 ]

Оборудование производств Издание 2 (1974) -- [ c.290 , c.291 ]

Производство мономеров и сырья для нефтехимического синтеза (1973) -- [ c.37 , c.38 , c.43 , c.45 , c.46 , c.50 , c.55 , c.61 , c.65 , c.67 , c.72 , c.77 , c.80 , c.91 , c.93 , c.94 , c.137 , c.138 , c.207 , c.208 ]




ПОИСК







© 2025 chem21.info Реклама на сайте