Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Концентрация зависящие от двух или более

    Рассмотрим зависимость диссоциации от присутствия постороннего электролита. Здесь надо различать два случая первый — когда один из ионов одинаков у обоих электролитов, и второй — когда одноименных ионов у них нет. В первом случае это влияние обычно бывает более сильным. Ввиду того, что свойства свободного иона не зависят от его происхождения, в константы диссоциации каждого из этих электролитов будет входить суммарная концентрация (или активность) общего иона. В соответствии с этим степень диссоциации слабой кислоты в растворе резко уменьшается при прибавлении к раствору сильной кислоты. Обратное же влияние не может быть значительным. [c.391]


    Установить наличие водородной связи можно различными способами, в том числе измерением дипольных моментов, по особенностям растворимости, понижению температуры замерзания, теплотам смешения, но наиболее важный способ основан на том влиянии, которое оказывает водородная связь на вид инфракрасных [9] и других спектров. Частоты колебаний в ИК-спектре таких групп, как О—Н и С = О, значительно сдвигаются, если эти группы участвуют в образовании водородной связи. При этом всегда наблюдается сдвиг полос поглощения в область более низких частот для обеих групп А—Н и В, причем для первых этот сдвиг более значителен. Например, свободная группа ОН в спиртах и фенолах поглощает в области от 3590 до 3650 см если же эта группа участвует в образовании водородной связи, полоса поглощения смещается на 50—100 см и расположена в области от 3500 до 3600 см [10]. Во многих случаях в разбавленных растворах только часть ОН-групп участвует в образовании водородных связей, а часть находится в свободном состоянии, тогда в спектрах наблюдается два пика. С помощью инфракрасной спектроскопии можно различить меж- и внутримолекулярные водородные связи, поскольку первые дают более интенсивный пик при повышении концентрации. Для определения водородных связей используются и другие виды спектроскопии КР-, электронная, ЯМР-сиектроскопия [11, 12]. Поскольку при образовании водородной связи протон быстро переходит от одного атома к другому, ЯМР-спектрометр записывает усредненный сигнал. Водородную связь определяют обычно по смещению химического сдвига в более слабое поле. Водородная связь меняется в зависимости от температуры и концентрации, поэтому сравнение спектров, записанных в разных условиях, служит для определения наличия водородной связи и измерения ее прочности. Как и в ИК-спектрах, в спектрах ЯМР можно различить меж- и внутримолекулярные водородные связи, так как последняя не зависит от концентрации. [c.115]

    При очень малых концентрациях метиленового синего (менее 6-10" М) на полярограммах имеется только одна волна. При увеличении концентрации метиленового синего появляется еще другая волна при более отрицательных потенциалах. Высота этой волны линейно увеличивается с ростом концентрации, в то время как высота первоначальной волны после достижения определенного предела уже не зависит от концентрации метиленового синего (рис. 127). Брдичка [2, 3] объяснил это явление адсорбцией лейко-формы (продукта восстановления) метиленового синего. Рассмотрим два возможных случая появления адсорбционных волн. [c.261]


    Большим достижением в методике определения концентрации водородных ионов являлось изобретение стеклянного электрода. Еше в 1906 г. Кремер заметил, что тонкая стеклянная мембрана, разделяющая два раствора, обнаруживает скачок потенциала, зависящий от концентрации Н+-ионов. Более детальное исследование показало, что потенциал такой мембраны зависит также от концентрации других ионов (Ыа+, К+, КЬ+ и Сз+), от состава и толщины стекла и температуры. [c.190]

    Данные о скоростях реакций (или изучение их кинетики) дают информацию о последовательности стадий ли о механизме реакций. Химическое превращение может включать много индивидуальных стадий, из которых Одни протекают медленнее, чем другие. Именно эта медленная стадия и определяет скорость всего процесса. Подавляющее большинство химических реакций являются мономолекулярными или бимолекулярными реакциями, что означает, что в стадии, определяющей скорость протекания всей реакции, участвует один или два реагента. Экспериментально скорости реакций в растворе обычно зависят, от концентраций одного или более реагентов или продуктов. Обычно это выражают при помощи уравнения скорости реакции, согласно которому скорость является произведением концентрации реагентов и константы скорости к  [c.306]

    Результаты изучения влияния относительного количества хладагента и его температуры на концентрацию и выход газообразного формальдегида графически представлены на рис. 52 и 53. Как видно из рисунков, газообразный формальдегид с содержанием 88—90% этим методом может быть получен с выходом не ниже 60%, что значительно превосходит соответствующий показатель трубчатого теплообменника и практически не отличается от результатов работы последнего под вакуумом. При снижении температуры хладагента или при увеличении избытка последнего концентрация газообразного формальдегида возрастает до 93—95%. К недостаткам метода относится сравнительно высокая кратность циркуляции хладагента. Однако расчет показывает, что в оптимальных условиях расход хладагента мало отличается от требуемого по тепловому балансу. Очевидно, что количество хладагента зависит от его энтальпии и может быть снижено в случае замены углеводородов на продукт с более высокой теплоемкостью. Таким продуктом, в частности, является вода, теплоемкость которой [4, 19] почти вдвое превосходит теплоемкость углеводородов (около 2,3 Дж/(г-К). Применение воды в качестве хладагента смешения действительно позволяет получить газообразный формальдегид с содержанием 90—95% при соотношении хладагент формалин 15—18, т. е. практически в два раза меньше, чем при применении углеводородов (рис. 54). Однако выход концентрированного продукта составляет всего 15—20%. что и понятно, поскольку в этом случае создается благоприятная обстановка для протекания реакции образования метиленгликоля. Памятуя равновесный и легко обратимый характер этой реакции, можно уменьшить глубину ее протекания, используя вместо чистой воды раствор формальдегида. Как видно из рис. 54, применяя в качестве хладагента смешения водный раствор, содержащий 15—30% формалина, можно при тех же показателях довести выход газообразного формальдегида до 40%. На практике легко подобрать концентрацию формальдегида в циркулирующем хладагенте таким образом, чтобы она была равна концентрации естественного конденсата из узла парциальной конденсации. Так, легко убедиться, что при 40% циркулирующий конденсат должен содержать 28 —29% формальдегида. В этом случае как сама техника концентрирования, так и схема потоков чрезвычайно проста (рис. 55). [c.172]

    Константу равновесия в этом случае называют константой ионизации. В данном случае константа равновесия, т. е. отно-щение произведения концентраций ионов к концентрации не-диссоциированных молекул в момент равновесия, является константой ионизации. Для слабого электролита константа ионизации — величина постоянная при данной температуре, не зависит от концентрации раствора и служит более общей характеристикой раствора, чем степень диссоциации. Чем больше константа ионизации, тем электролит легче распадается на ионы, тем он сильнее. Для всякого слабого электролита, диссоциирующего на два иона, связь между константой ионизации концентрацией раствора и степенью диссоциации выражается соотношением [c.32]

    ММР сополимеров зависит от природы каталитической системы, растворителя, температуры полимеризации, концентрации катализатора, регулятора молекулярной массы и др. Сополимеры со сравнительно узким ММР можно получить на гомогенных катализаторах. На катализаторах, содержащих два или несколько активных центров с разной продолжительностью жизни или разной активностью, образуются сополимеры с более широким или [c.304]

    Чтобы разобраться в этом вопросе, необходимо вспомнить, что понимают под реакцией первого порядка. Под реакцией первого порядка понимают такую реакцию, скорость которой, выраженная числом молей реагента, превращенного в единице объема за единицу времени, пропорциональна числу молей реагента в единице объема. Отсюда следует, что степень превращения реагента не зависит от его концентрации. Поэтому, если смешиваются два объема реагирующих жидкости или газа с различными концентрациями, то общее количество образовавшегося продукта будет через определенный период точно таким, каким оно было бы, если бы оба эти объема не смешивались. Утверждение справедливо только по отношению к реакциям первого порядка. Если бы скорость реакции зависела от концентрации в степени, большей единицы, то смешение двух количеств жидкости, одна из которых разбавлена более, чем вторая, привело бы к снижению общего количества продукта реакции, образовавшегося за рассматриваемый промежуток времени и наоборот, если скорость зависит от концентрации в степени от нуля до единицы, то смешивание более и менее концентрированных жидкостей увеличило бы общую скорость реакции. [c.101]


    Здесь константа ингибирования / <0,1 и скорость зависит от первой степени интенсивности света. При этом предполагается, что атомы С1 исчезают при диффузии (или конвекции) к стенкам по реакции первого порядка. Это более или менее хорошо согласуется с другими работами [30, 31] в этой области, хотя вследствие трудностей, возникающих при применении метода стационарных концентраций, все эти результаты должны быть приняты с некоторыми оговорками. Краггс [32], Алманд и Сквайр [32, 33] работали с очень низкими концентрациями На и показали, что зависимость от интенсивности света изменяется от при низких концентрациях С12 (- 0,01 мм рт. ст.) и низких интенсивностях света до 7 2 при больших концентрациях С1г( 450 мм рт. ст.) и больших интенсивностях света. При постоянной интенсивности света скорость проходит через максимум по мере изменения давления С12. На основании этого можно ожидать, что существуют два пути гибели атомов С1 в системе, сходные со случаем гибели атомов Вг [см. уравнение (XIII.4.4)]. Эти авторы предположили, что специфическое действие С1г как третьей частицы основано на образовании важного промежуточного соединения С1з. Тогда стадию обрыва цепи можно записать следующим образом  [c.301]

    Чтобы понять сущность диффузионного потенциала, допустим, что в цепи граничат два раствора L и L2 одного и того же электролита КА разных концентраций. В этом случае происходит диффузия ионов из раствора Li, более концентрированного, в раствор L2, более разбавленный. Если скорость диффузии катионов больше, то за некоторое время из первого раствора во второй перейдет больше катионов, чем анионов. В результате этого раствор L2 будет содержать избыток положительных зарядов, а раствор L — отрицательных. Каждый раствор имеет заряд. Разность потенциалов, установившаяся между растворами, соответствует диффузионному потенциалу. Величина диффузионного потенциала зависит от температуры, концентрации и подвижности К" " и А, а в целом от ионного состава растворов Li и L2. Обычно она не превышает десятков милливольт. [c.167]

    Если в реакции участвуют два или более веществ, то скорость реакции иногда зависит от концентрации только одного из них и не зависит от концентрации других. [c.110]

    Для нахождения фактора рассеяния P существует два метода обработки экспериментальных данных метод асимметрии и метод Зимма. Первый сводится к определению коэффициента асимметрии z, представляющего собой отношение интенсивностей рассеяния под углами, симметричными относительно 90°. Величина 2 зависит от концентрации раствора, и для получения значений, не зависящих от С, проводят экстраполяцию величины 1/z-l на бесконечное разбавление (С->0), получая так называемое характеристическое значение z, по которому из таблиц находят значение Рв для соответствующей конформации макромолекул. По методу Зимма проводят двойную экстраполяцию на нулевую концентрацию и на нулевое значение угла. Этот метод является более точным и обычно используется для полимеров с конформацией статистического клубка. [c.206]

    Как правило, реакции жидкофазного окисления могут проводиться при значительно более низких температурах, чем это возможно при парофазных процессах. Во многих случаях избирательность реакции оказывается значительно выше, так как с высокими выходами образуются только один-два продукта. Для увеличения скорости окисления часто применяют соли металлов в качестве катализаторов. Легкость и глубина окисления зависят от таких факторов, как характер исходного сырья, присутствие катализатора, присутствие антиокислителей и параметры реакции — температура, давление кислорода, концентрация углеводородного сырья. [c.209]

    Для сульфатных и перхлоратных растворов можно наблюдать два потенциала пассивации, из которых более отрицательный подчиняется рассмотренной выше обычной зависимости от pH, а более положительный от pH не зависит, но изменяется с изменением природы и концентрации анионов. Потенциал пассивации железа в сульфатном растворе может изменяться и при введении в этот раствор постороннего аниона, например, при добавлении к серной кислоте фосфорной кислоты [ 77]. В свете рассмотренных данных известная из литературы линейная зависимость потенциала пассивации железа в серной кислоте от pH раствора [73], полученная в. опытах с разбавлением серной кислоты, то есть без соблюдения постоянства анионного состава, может быть объяснена влиянием на JJ концентрации ионов сульфата. [c.16]

    Рассматривая уравнения скорости гомогенных процессов, можно указать и те общие приемы, которые способствуют интенсификации процессов, идущих в жидкой и газовой средах. Из уравнений (V.7) — (V.14) видно, что скорость реакции максимально зависит от концентраций тех реагирующих веществ, которые входят в наибольшем количестве в уравнение реакции. При этом скорость многомолекулярных реакций с повышением концентраций будет возрастать быстрее, чем скорость реакций более низших порядков. Поэтому при концентрировании, обогащении сырья необходимо учитывать порядок реакции. Например, повышение концентрации исходных веществ в два раза позволяет повысить скорость реакции второго порядка в 4 раза. [c.142]

    Два цитохрома ведут себя особым образом и представлены табл. 10-6 дважды. Потенциал цитохрома Ьт в средней точке меняется от —0,030 В в отсутствие АТР до +0,245 В при высоких концентрациях АТР. С другой стороны, значение Е° для цитохрома Сз =+0,385 В снижается в присутствии АТР до 0,155 В. Этот сдвиг потенциала дает основание думать, что с синтезом АТР сопряжено окнс- ление высокоэнергетической восстановленной формы цитохрома OtJ В присутствии высоких концентраций АТР образование этого проме-i Жуточного соединения путем восстановления оказывается более труд- ным (разд. Д, 9,а). Противоположное по направлению изменение для цитохрома Ьт свидетельствует о том, что высокоэнергетической этом случае является окисленная форма [уравнение (10-11)]. Правомерность таких выводов зависит от точности и достоверности, с какова спектроскопические методы позволяют измерять отношение [окисл.]/[восстан.]. На основании этих результатов делали даже вывод о том, что цитохромы Ьт и аа непосредственно участвуют в процессе окислительного фосфорилирования [72—75]. Однако с этим далеко не все согласны [77]. [c.409]

    Способ удаления серы из природного газа адсорбцией при температуре окружающей среды применяется в США и в Канаде. В качестве адсорбентов в основном служат активированный уголь или молекулярные сита. Так как при этом требуется частая регенерация адсорбентов, то функционировать должны два или более аппаратов, чтобы один из них работал в линии, пока другой подвергается регенерации. Эффективность адсорбционных систем зависит как от типа сернистых соединений, так и от концентрации высших углеводородов, находящихся в природном газе. Низкокипящие сернистые соединения адсорбируются неустойчиво, в присутствии конденсирующихся углеводородов может происходить быстрое насыщение адсорбента, Поэтому если происходят изменения такого типа, то эффективность сероочистки часто ненадежна. В этом случае целесообразно использовать предохранительный аппарат, содержащий в качестве абсорбента окись цинка. Если природный газ содержит в основном сероводород и меркаптаны, то может быть использована одна окись цинка, желательно при температуре 350—400° С. В случае присутствия большого количества различных сераорганиче-ских соединений применяется другой метод, который описывается в следующем разделе. [c.64]

    Характер спектра абсорбции тиамина зависит от концентрации водородных ионов [16]. Спектр поглощения тиамин-хлорида имеет два максимума при pH 7 — 235 и 267 нм и только один максимум при pH 5,5 и в более кислом растворе — 245 — 247 нм ( 41442) [17, 18]. [c.377]

    Эта реакция, по-видимому, протекает более сложно, чем другие для нее установлены два главных направления. Если заместители в бензольном кольце не являются сильными электроноакцепторными группами, то скорость образования циннолина зависит от концентрации кислоты можно предполагать, что стадией, определяющей скорость реакции, является катализируемая кислотой енолизация [40]. Аналогичное явление наблюдается при катализируемом кислотой галогенировании кетонов [40, 54[ и о других подобных реакциях. С другой стороны, если бензольное кольцо содержит в соответствующих положениях такие электроноакцепторные группы, как нитрогруппа, повышающие электрофильность иона диазония, то реакция, по-видимому, не должна быть чувствительной к концентрации кислоты. [c.125]

    Между ними существует переходная группа, которая получила название микроаэрофильных организмов. Для их жизнедеятельности требуются малые концентрации кислорода в среде. Анаэробные микроорганизмы подразделяются на а) факультативные (условные) анаэробы, которые могут развиваться как в присутствии, так и в отсутствии молекулярного кислорода и б) облигатные (безусловные, строгие) анаэробы, развивающиеся только в отсутствии молекулярного кислорода, который для них является ядом. Указанное деление микроорганизмов носит, конечно, условный характер. В зависимости от потребности в кислороде у микробов может быть два типа дыхания аэробное, или настоящее дыхание, и анаэробное дыхание, или брожение. Тип дыхания зависит также от наличия тех или иных дыхательных ферментов в микробной клетке. Остановимся более подробно на этих типах дыхания. [c.528]

    Интересны представления относительно распределения плотности сегментов в адсорбционном слое, согласно которым существует два слоя более плотный нижний слой вблизи или на поверхности, который, однако, имеет плотность ниже плотности монослоя из сегментов из-за стерических затруднений, и удаленный менее плотный слой, состоящий из петель, т. е. из полимера, не связанного прямо с поверхностью [1591. Этот слой отвечает за кажущийся избыток адсорбции. Вклад петель в эффективную гидродинамическую толщину слоя зависит от объемной концентрации сегментов и жесткости петель. Однако примерная пропорциональность характеристической вязкости указывает на то, что верхний слой имеет структуру, аналогичную структуре свободных клубков в растворе. Тот факт, что влияние растворителя и температуры одинаково в адсорбционном слое и в фазе раствора, подтверждает эту картину. [c.90]

    Вен и Ю, базируясь на ряде допущений, рассчитали что при малых значениях Re< и Re сепарация твердых частиц происходит в тех случаях, когда отношение скоростей начала псевдоожижения обоих компонентов больше 2. Было экспериментально установлено, что это отношение примерно сохраняет свое значение и при высоких значениях Re< и Re . В цитируемой работе также показано, что при отсутствии сепарации полидисперс-ная смесь ведет себя как монодисперсный материал с такой же удельной поверхностью. Из приведенных ранее неопубликованных данных следует, однако, что сеперация зависит от порозности и становится более четкой при увеличении последней. Установлено также что для системы, состоящей из шариков двух различных размеров, но одинаковой плотности, существует критическое значение порозности, ниже которого сепарации не наблюдается. При высоких концентрациях частиц сепарация происходит только в том случае, если скорости витания частиц разных размеров отличаются минимум в два раза. [c.52]

    Определение молекулярного,. а тесно связано с растворимостью вещества. Его определяют в разбавленных растворах. Мольная доля растворенного вещества в этом случае так мала, что теплота смешения приближается к нулю. Когда теплота смешения велика, растворимость зависит от температуры и, следовательно, молекулярный вес может изменяться при изменении температуры, при которой производится определение. Асфальтены ведут себя именно таким образом. Если они находятся в контакте с избытком бензола, то устанавливается равновесие между концентркрованным слоем набухших асфальтенов и слоем разбавленного раствора асфальтенов в бензоле. Содержат ли оба слоя асфальтены одного типа — неизвестно, но логично предположить, что в слое разбавленного раствора содержится большее количество более растворимых асфальтенов, чем в набухшем слое. При возрастании температуры концентрации асфальтенов в обоих слоях начинают сближаться, и это сближение продолжается до тех пор, пока не образуется однородный раствор. Температура его образования и есть температура взаимного растворения. При охлаждении такой раствор не разделяется на два слоя, но благодаря взаимодействию между компонентами образуется суспензия менее растворимой части асфальтенов в растворе более растворимых фракций. Разделение асфальтенов на более и менее растворимые фракции зависит от соотношения углерод водород в их молекуле, так как при увеличении этого соотношения их растворимость ухудшается. [c.10]

    Молекулярный вес асфальтенов зависит от примененного при криоскопии растворителя. Некоторые из них вызывают явления ассоциации молекул. Нанример, асфальтены из нефти Венесуэлы показали молекулярный вес в бензоле методом криоскопии от 2000 до 4000, но понижению упругости пара около 12 ООО, по другим методам еще выше. Молекулярный вес в камфаре оказался для этого образца порядка 600, в нитробензоле около 800. С. Р. Сергиенко нашел, что более или менее постоянные величины получаются в широком интервале концентраций в нафталине (от 1 до 15%). Величина найденного ио этому методу молекулярного веса асфальтенов из ромашкинской нефти лежала в пределах от 2075 до 2236, т. е. примерно в два-три раза выше, чем у нейтральных смол. [c.150]

    Максимальное значение концентрации асфальтенов и соответствующая её достижению глубина карбонизации зависят от природы ДКО и условий их термообработки (рис.5.3 и 5.4). Энергия активации накопления асфальтенов составляет 85 и 184 кДж/моль, а а-фракцин - 102 и 260 кДжУмоль для сернистого и малосернистого ДКО соответственно на участке слева от максимума концентрации асфальтенов, что указывает на существенно более высокую реакционную способность сернистого остатка. В случае малосернистого ДКО при Т <420°С время установления МК.А значительно больше 6ч, а при 440°С составляет З...4,5ч. Для сернистого остатка эти температуры на 20°С ниже. Повышение давления снижает МКА и увеличивает время её достижения. В зависимости от природы остатков, температуры и давления МКА составляет 40...70% и достигается в КМ, содержащих 12...25% а-фракции, которая появляется в КМ при существенно меньших концентрациях асфальтенов (2,9 и 18% для малосернистого и сернистого остатков соответственно), возрастающих с повышением ароматичности остатков. Механическое перемешивание КМ способствует более быстрому достижению предельного выхода дистиллята и увеличению вклада неизотермической стадии нагрева в формирование состава и структуры КМ. При Т, . 2450°С механическое перемешивание по влиянию на выход КМ эквивалентно повышению температуры на 30...50°С. При температурах выше 470°С влияние механического перемешивания на выход КМ незначительно. На изотермической стадии механическое перемешивание влияет на состав и структуру КМ и в меньшей степени на её выход. Зависимость концентрации асфальтенов в КМ от степени превращения ДКО при карбонизации с механическим перемешиванием обнаруживает два максимума [218]. Первый максимум наблюдается на неизотермической стадии как результат физического концентрирования асфальтенов и образования их из наиболее реакционноспособной части мальтенов, второй - на изотермической стадии как результат образования асфальтенов из малореакционно-способных компонентов смол и ПЦА-углеводородов. В области второго [c.155]

    Термодинамический и кинетический подходы. В истолковании явления сольватации имеются два подхода. Один из них называется термодинамической сольватацией. Он основан на преимущественном учете взаимодействий ион— растворитель и предполагает, что при сольватации ионы прочно связывают определенное число молекул растворителя. Это число называется сольватацион-ным (в случае водных растворов — гидратационным). Для количественной характеристики сольватационные числа не всегда применимы, так как они в значительной степени зависят от методов их определения. Достаточно указать, например, что, по данным различных авторов, гидратационные числа для иона Li+ изменяются от 158 до 4, для иона Са + —от 16 до 6 для иона АР+ — от 39 до 6 и т. д. Более определенный смысл имеет число молекул растворителя, составляющих непосредственное окружение иона (координационное число). Оно служит одной из важнейших количественных характеристик процесса сольватации. Координационное число зависит от природы сольватирующихся частиц, их концентрации и т. д. Обсуждаемый подход к сольватации на основе преимущественной роли взаимодействия ион — растворитель связан с представлениями о термодинамической устойчивости ас-социата ион — молекулы растворителя, мерой которой является общая энергия взаимодействия между ними. [c.238]

    Электродный потенциал В этом случае металл будет заряжаться положи-.металла может быть тельно. Разность потенциалов между пластиной ме-положительным и И1 талла и раствором зависит от природы металла и отрицательным концентрации ионов, участвуюпгих в равновесии у поверхности металла. Цинк приобретает более положительный потенциал, чем медь, так как более склонен к растворению-переходу в ионное состояние, чем к осаждению в виде металла. Два металла — цинк и медь, погруженные в раствор их ионов, могут быть соединены так, как это показано на рис. 13.1, образуя электрохимическую ячейку. Растворы сульфатов цинка и меди (И) разделены пористой перегородкой. Металлические пластины — это электроды ячейки, соединенные через вольтметр. Поскольку на электродах протекают реакции [c.305]

    Механизмы гетерогенных каталитических реакций, строго говоря, никогда не бывают мономолекулярными. Они всегда включают, напрпмер, стадии адсорбции, в которых исходных веществ, как минимум, два — газ и катализатор. Однако если рассматривать ире-вращепия только поверхностных соединений при фиксированном составе газовой фазы (заметим, что большинство кинетических экспериментов в гетерогенном катализе проводится именно таким образом), то механизм каталитической реакции можно считать совокупностью моио молекулярных стадий. В каждой элементарной реакции здесь будет участвовать не более одной молекулы промежуточного вещества. М. И. Темкнн назвал такие механизмы линейными, так как скорости реакций в них зависят от концентраций промежуточных веществ линейно. [c.72]

    ЖИДКИЕ СМЕСИ, могут содержать два и более компонента остаются стабильными в определ. диапазоне т-р. При неогранич. взаимной р-римости компонентов (напр., в системе спирт — вода) Ж, с. гомогенны при любых концентрациях компонентов. Если взаимная р-римость ограничена и зависит от т-ры, сушествует определ, интервал концентраций, в к-ром Ж. с. расслаиваются на две жидкие фазы, каждая нз к-рых — насыщенный р-р одного компонента в другом. Взаимная растворимость компонентов может расти с повышением или уменьшением т-ры в первом случае возможно появление верхней, во втором — нижней критич. точки равновесия жидкость — жидкость (перехода гетерогенной Ж. с. в гомогенную). Различие в составах жидких фаз в системах с расслаиванием иснольз, для разделения Ж, с. (см. Экстракция жидкостная). [c.203]

    Существуют два варианта РРА-флуоресцентный и абсорбционный. Первый получил более широкое распространение. В этом случае регистрируют характеристич. рентгеновское излучение (обычно К- или L-серии см. Рентгеновская спектроскопия), испускаемое возбужденными атомами определяемого элемента. Энергия этого излучения зависит от атомного номера элемента, а интенсивность пропорциональна его концентрации. Для возбуждения характеристич. рентгеновского излучения наиб, часто применяют источники низкоэнергетич. у- или рентгеновского излучения. В кск-рых случаях (напр., при определении легких элементов) предпочтительнее применять источники а-частиц (см. рис., а). Ха- [c.244]

    Существует два осн. типа моделей структуры дисперсной системы. В первом случае предполагается, что в системе существует непрерывная сетка межчастичных связей, к-рую можно рассматривать как квазикристаллич. решетку. Часть узлов решетки свободна ( вакансии ). Возможность течения системы обусловлена перемещением этих вакансий под действием сдвигового напряжения. Во второй модели рассматриваются группы частиц, двигающиеся как единое целое (агрегаты или блоки). Текучесть системы зависит от размера агрегатов, к-рый, в свою очередь, определяется скоростью деформации. Эта модель соответствует случаю более глубокого разрушения структуры при деформировании. Если структура имеет неоднородности, что характерно для высококонцентрир. систем, при деформировании может образоваться разрыв сплошности, т. е. появляется зона локализации сдвига с пониж. концентрацией дисперсной фазы. Рассматривая это явление по аналогии с образованием трещины в кристалле и используя критерий Гриффитса для роста трещины (см. Прочность), можно считать, что образование разрыва сплошности произойдет при где /-характерный размер неоднородности, а и Г-соотв. размер частиц и сила связи между ними, обусловленная межмол. притяжением. [c.249]

    Длина коротких ветвлений обычно на два и более порядка меньше длины основной цепи. По данным работ [18], образова-. нию коротких ветвлений благоприятствуют низкие концентрации мономера и проведение полимеризации при высокой температуре и до большой конверсии ВА. Концентрационную зависимость содержания коротких ветвлений авторы объясняют конкуренцией реакций роста й передачи цепи. Скорость роста цепи пропорциональна концентрации ВА и уменьшается по мере увеличения кон-версяи, тогда как скорость реакции передачи цепи не зависит от концентрации мономера. Температурная зависимость содержания коротких ветвей объясняется меньшей энергией активации реакции роста цепи по сравнению с реакцией передачи цепи. Разница в энергиял активации реакций передачи цепи на полимер и роста [c.12]

    Излучение источника фокусируется зеркалами на диспергирующее устройство (призма из высококачественного кварцй фракционная решетка). Там пучок разлагается в спектр, изображение которого тем же зеркалом фокусируется на выходной щели монохроматора. Выходная щель из полученного спектра вырезает узкую полосу спектра чем уже щель, тем более монохроматична выходящая полоса. С помощью зеркала монохроматизированный пучок разделяется на два одинаковых по интенсивности луча один проходит через кювету сравнения, а другой - через кювету с образцом. Вращающейся диафрагмой перекрывают попеременно то луч сравнения, то луч образца, разделяя эти лучи во времени. После прохождения кювет световой поток зеркалами направляется на детектор, которым обычно служит фотоэлемент или фотоумножитель. После детектора сигнал усиливается и поступает на специальное электронное устройство -разделитель сигналов, где он раздваивается на два канала сигнал образца и сигнал сравнения. В обоих каналах сигналы усиливаются и подаются на самописец, который регистрирует отношение степени пропускания световых лучей через кювету образца к пропусканию светового потока через кювету сравнения. Логарифм данного отношения равен разности оптических плотностей образца и эталона эту величину можно записать, если перед самописцем установлено логарифмирующее устройство. В этом случае спектр будет представлять зависимость оптической плотности от длины волны или волнового числа и зависит от концентрации измеряемого образца. Для получения спектра, не зависящего от концентрации раствора, экспериментально полученный спектр перерисовывают по точкам, пользуясь законом Бугера-Ламберта-Беера, в спектр в координатах lg (или )- X (или V), Нерегистрирующие спектрофотометры - однолучевые приборы, измеряющие по отдельным точкам (спектрометрический метод). В сочетании с измерительной системой по схеме уравновешенного моста это наилучшие приборы для точных количественных измерений, которые осуществляются путем сравнения сигналов при попеременной установке в световой пучок образца и эталона. Основной их недостаток состоит в большой затрате времени для записи спектра, а не полосы поглощения при единственном значении длины волны. [c.185]

    Некоторые системы, содержащие молибден, могут быть очень сложными, так как в них одновременно и независимо происходят два или более процесса, в результате чего получается смесь нескольких соединений. Природа образующихся соединений и их количества зависят иногда в значительной степени от температуры, концентрации, pH раствора, редокспотенциала, относительных количеств исходных веществ и других факторов. [c.8]


Смотреть страницы где упоминается термин Концентрация зависящие от двух или более: [c.317]    [c.233]    [c.124]    [c.17]    [c.432]    [c.390]    [c.37]    [c.473]    [c.209]    [c.28]    [c.139]    [c.190]    [c.188]   
Явления переноса (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Болов



© 2025 chem21.info Реклама на сайте