Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронные структуры, валентность и стереохимия

    Электронные структуры, валентность и стереохимия [c.375]

    В исследованиях пространственной структуры молекул получил признание метод Гиллеспи, основанный на модели отталкивания электронных пар валентной оболочки (ОЭПВО). Стереохимия молекулы зависит прежде всего от числа связывающих и неподеленных валентных электронных пар. Из многих правил для соединений непереходных элементов основным является утверждение, что электронные пары принимают такое расположение, при котором они максимально удалены друг от друга. Физическим обоснованием этого положения является принцип Паули. [c.104]


    Идея о том, что для описания молекулы могут быть использованы две или более соответствующим образом выбранные структуры, начала приобретать ясный физический смысл только после открытия электрона, с появлением классической электронной теории валентности. Направленные простые связи могли теперь рассматриваться химиком-органиком как объективная реальность, соответствующая паре электронов, связанной с двумя атомами, образующими связь двойная и тройная связи указывали иа присутствие двух или трех таких электронных пар. Объединенная с концепцией неподеленной пары и правилом октета, эта гипотеза позволила дать изящное объяснение основным положениям структурной органической химии. Нерешенными оставались, однако, две пробле.мы какие принципы определяют стереохимию многовалентных атомов и какое значение следует придавать множественным структурам, подобным структуре I. [c.18]

    В данном случае основными факторами являются электронная структура иона, его размер, предпочтительная стереохимия и валентное состояние. [c.375]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. Незадолго до открытия электрона Аррениус предположил существование свободных ионов. На основе этого предположения были сделаны многочисленные попытки найти объяснение силам, связывающим атомы. Хотя эти попытки были неудачными, они содействовали представлению об электрическом заряде как основе образования связи. После открытия электрона стало возможно дальнейшее развитие теории связи. В течение немногих лет, основываясь на положительно и отрицательно заряженных атомах, было предлол<ено много разных объяснений образованию связи, но почти не было попыток связать заряды атома с его строением. В 1916 г. Льюис предложил свою теорию валентности. С тех пор было много сделано в области применения математики в теории валентности, но в основе представления о химической связи лежит по-прежнему теория Льюиса. Согласно Полингу , химическая связь возникает между двумя атомами в том случае, если связывающая атомы сила настолько велика, что приводит к образованию достаточно устойчивого агрегата, чтобы обеспечить его существование в виде самостоятельной частицы. Обычно различают пять типов химической связи ионная, ковалентная, металлическая, связь, обусловленная силами Ван-дер-Ваальса, и водородная, причем три первых очень прочны. Все эти связи одинаково важны, но металлическая связь здесь не будет рассмотрена о ней можно прочесть в других источниках . [c.134]


    В результате возникает третья задача. Надо, чтобы теория валентности удовлетворительно объясняла стереохимию молекул. Теория стереохимии начала развиваться после того, как Вант-Гофф и ле Бель выдвинули важнейший постулат о тетраэдрической структуре атома углерода. Затем вследствие появления многих новых физических методов исследования, таких, как колебательная и вращательная спектроскопия, рентгеновская и электронная дифракция, химики смогли получить более полные сведения о структуре молекул. Например, для многих молекул межатомные расстояния и валентные углы известны теперь с очень высокой точностью. Это привело к предъявлению новых требований к теории валентности. Так, удовлетворительная теория должна объяснить не только, почему в метане все углы НСН тетраэдрические (109°28 ) [c.14]

    Теории кристаллического поля и поля лигандов оказались весьма плодотворными при рассмотрении корреляций между свойствами комплексов переходных металлов, например легкостью образования комплексов и стабильностью уже возникших соединений, реакционноспо-собностью, спектрами поглощения, магнитными свойствами, стереохимией и электронным строением комплексов. Подход Полинга, основанный на методе валентных структур, также не следует отвергать полностью в некоторых отношениях он дополняет теорию поля лигандов. Однако теории кристаллического поля и поля лигандов обладают тем существенным преимуществом, что они более приспособлены для количественного рассмотрения комплексных соединений. В настоящей книге мы коснемся применения теории кристаллического поля только к одному вопросу. [c.170]

    До открытия электрона невозможно было понять природу химической связи. Правда, понятие о валентности существовало уже в 1852 г. и в эти же годы существовали некоторые представления о геометрических формах молекул. Вант Гофф и Лебель установили тетраэдрическую структуру атома углерода, а Вернер создал стереохимию комплексных ионов. Очевидно, для того чтобы молекула имела определенную геометрическую форму, должны существовать какие-то связывающие силы между ее частями. В структурных формулах такую химическую связь между связанными атомами изображали черточкой. Она указывала на существование связи, но, разумеется, не давала никакого описания ее природы. [c.159]

    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов неподелен-ные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и о.т и-ночные неспаренные электроны находятся в предпоследнем (п 1) -подуровне, т. е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены [c.191]

    Основы новой теории были заложены в 1940 г., когда Сиджвик п Пауэлл сделали обзор стереохимии известных тогда неорганических соединений и заключили, что пространственное распределение связей для многовалентных атомов непосредственно связано с общим числом электронов валентного электронного уровня. Они предположили, что электронные пары, находящиеся в валентном уровне многовалентного атома, расположены всегда так, что отталкивание между ними минимально, независимо от того, являются ли они поделенными (связывающими) парами или неподе-ленными (несвязывающими или свободными) парами. В соответствии с этим предположением две пары будут располагаться линейно, три — в плоском треугольнике, четыре — тетраэдрически, пять — в виде тригональной бипирамиды и, наконец, шесть пар — октаэдрически. Оказалось, что указанные конфигурации, объясненные таким простым способом, правильно предсказывают формы молекул во всех известных соединениях непереходных элементов, для которых все электронные пары валентного уровня соединены с идентичными атомами или группами. Если одна или более электронных пар не поделены пли если имеется два или более разных видов присоединенных атомов, то следует ожидать отклонений т геометрически правильных структур. [c.198]

    ОКОЛО ядра с зарядом (М + 1). Возникает вопрос, может ли не-поделенная пара электронов в атоме занять тетраэдрическое положение, подобно связывающей паре электронов Если это возможно, а это вполне разумно, то можно придать молекулам воды и аммиака тетраэдрическую структуру, основанную на 5р -гибри-дизации, и теперь уже понадобится объяснять отклонение валентных углов не от 90°, а от 109,5°. Такие представления были довольно успешно развиты, но здесь они подробнее рассмотрены не будут. Стереохимия детально обсуждается в гл. 6. [c.176]

    Одной из наиболее ценных идей, которая, по-видимому, должна быть введена в стереохимию вслед за первыми применениями теории валентной связи, является утверждение, что при определении структур молекул соединений непереходных элементов не-тюделенные, или свободные пары электронов так же важны, как и связывающие пары. Однако следует отметить, что при определении стереохимии соединений переходных элементов свободные пары, вероятно, не играют такой же роли, как в случае непереходных элементов. У атомов переходных элементов свободные пары и одиночные неспаренные электроны находятся в предпоследнем п — 1) -подуровне, т., е. на негибридных металлических атомных орбиталях, тогда как у непереходных элементов они расположены на внешнем квантовом уровне, т. е. на гибридных орбиталях. Действительно, октаэдрическая конфигурация комплексов переходных металлов не зависит от числа несвязывающих электронов. Так, ион Мо(СМ)б имеет додекаэдрическую форму несмотря на то, что валентная оболочка атома молибдена содержит девять электронных пар. [c.199]


    Альтернативой правилу благородных газов является утверждение, согласно которому общее число валентных электронов равно 18 столько электронов требуется для заполнения 9 орбиталей пяти ё-, одной 5- и трех р-орбиталей. При этом простой подсчет электронов объясняет образование одноядерных карбонилов элементами с четными номерами (Сг(СО)е, Ре (СО) 5 и N1(00)4) и двуядерных карбонилов марганца, железа и кобальта, если предположить существование нормальных двухэлектронных связей между атомами металла. Это утверждение согласуется также со стереохимией молекул, образованных замещением группы СО другими донорными молекулами, например, в комплексе Ре(СО)з(РКз)г, имеющем, подобно Ре(СО)э, вид тригональной бипирамиды, и в Мо(СО)бРРз, имеющем, подобно Мо(СО)б, октаэдрическое строение, а также со структурами Со(СО)45 Нз (тригональная бипирамида) и Мп(СО)5СНз (октаэдр), причем атомам Со и Мп, не образующим одноядерных карбонилов, лиганды дают 9 и И электронов соответственно. Вместе с тем сформулированное правило не выполняется для У(СО)е, для некоторых 16-электронных комплексов платины, а также для молекул тппа N (051 5)2 (разд. 22.4). [c.59]

    Р. Дж. Гиллеспи (J. hem. So ., 1963, p. 4679) сделал попытку расширить теорию отталкивания валентных электронных пар на переходные элементы для предсказания стереохимии молекул этих элементов, в частности с координационным числом пять. Он предположил, что если взаимодействие между электронными парами лиганда относительно более важно, чем их взаимодействие с -электронами центрального атома, что, вероятно, имеет место в комплексах с преимущественно ковалентным характером, то можно ожидать тригонально-бипирамидальную структуру. Если же преобладает взаимодействие между связывающими электронными парами лиганда и -электронами, то это будет, вероятно, случай комплекса с существенно ионным связыванием и для него надо ожидать квадратно-пирамидальную структуру. В том случае, когда оба типа взаидюдействия сравнимы по силе, [c.319]

    При мезомерии имеется особенно сильное взаимное влияние связей между соседними или связанными в циклическую систему атомами. Это влияние проявляется как в химическом гюведении, так и в структуре соединений, в межатомных расстояниях и валентных углах. Определение структуры при помощи рентгеновских интерференций, диффракции электронов и рентгеновских лучей дает в настоящее время возможность определять доволыю точно межатомные расстояния и валентные углы как в кристаллических решетках, так и в изолированных молекулах, находящихся в газовой фазе, а частично таки<е и в жидкостях. В общем неточности в определении межатомных расстояний находятся в пределах 1—2 , в определении валентных УГЛОВ 2—4°. В последнее время, в частности в Америке, выполнены многочисленные определения подобного юда. Эти данные являются ценным дополнением для классической стереохимии, модели которой при этом оказались подтвержденными во всех своих существенных чертах. Их размеры установлены при помощи определения межатомных расстояний, о чем классическая стереохимия не могла дать никаких сведений. [c.391]


Смотреть страницы где упоминается термин Электронные структуры, валентность и стереохимия: [c.12]    [c.296]    [c.302]    [c.327]    [c.14]    [c.374]    [c.196]    [c.588]    [c.589]    [c.50]    [c.169]    [c.169]   
Смотреть главы в:

Современная неорганическая химия Часть 2 -> Электронные структуры, валентность и стереохимия

Современная неорганическая химия Часть 2 -> Электронные структуры, валентность и стереохимия




ПОИСК





Смотрите так же термины и статьи:

Валентные электроны

Стереохимия

Электроны валентные электроны



© 2025 chem21.info Реклама на сайте