Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции замещения с образованием С связи

    При атаке атома углерода, несущего частичный положительный заряд (вследствие поляризации связи С—X), реагентом 0Н начинает намечаться образование связи НО—С с одновременным ослаблением С—Х-связи. Реакция идет через переходное состояние (реакционный комплекс), в котором три атома водорода расположены в одной плоскости, перпендикулярной линии связи НО—С—X. При дальнейшем удалении галогена от углеродного атома и перехода его в ион Х группа ОН приближается к атому углерода настолько, что образует с ним обычную ковалентную связь. Весь процесс замещения осуществляется в одну стадию. Рассмотренный механизм реакции называется бимолекулярным нуклеофильным замещением и обозначается символом 5к2 (Ингольд). Скорость этой реакции пропорциональна концентрациям галогеналкила и нуклеофильного реагента  [c.94]


    Однако удобнее органические реакции классифицировать по их механизмам. Под механизмом химической реакции понимают путь, который приводит к разрыву старой химической связи и образованию новой. Чтобы установить, как протекает этот процесс, необходимо представить все последовательные состояния, через которые проходит система реагирующая молекула — реагент . При этом необходимо учитывать не только образование конечных продуктов реакции, но и промежуточных, а также влияние изменения условий на протекание реакции. Рассмотрим наиболее простой случай химической реакции — реакцию замещения. Эта реакция сопровождается разрывом ординарных связей (сг-связей) и образованием новых с заменой одной атомной группировки на другую. В зависимости от характера атакующего реагента и природы связей в реагирующей молекуле разрыв а-связи может протекать по двум основным механизмам  [c.24]

    Общий механизм каталитического действия координационных комплексов сводится к облегчению электронных переходов в общей системе электронов и ядер внутри комплекса по сравнению с переходами между отдельными молекулами. С этих позиций естественно считать, что стадия образования координационных комплексов может ускорять как реакции окисления—восстановления, так и реакции перераспределения валентных связей (ин-тра- и интермолекулярные), поскольку между различными молекулами, входящими в координационную сферу комплекса в качестве лигандов, взаимодействие облегчается 5, 61. В случае гетерогенного катализа через координационные комплексы можно рассматривать активный центр как металл (его ион) с незаполненной сферой лигандов и применять к нему уже известные общие и частные принципы связи между строением комплексообразующего иона или ненасыщенного комплекса с его каталитической активностью. Существенную роль в определении активности катализатора в координационном катализе играют стабильность первоначально образующегося комплекса в реакциях, протекающих по механизму замещения лигандов. В этом случае, как следует из общей теории катализа и принципа энергетического соответствия Баландина, должна наблюдаться экстремальная зависимость между активностью катализатора и стабильностью комплекса. [c.59]

    Механизмы реакций замещения. Комплексы с координационным числом 6. Среди комплексов этого типа больше всего изучены комплексы Со(1П), а также Сг(1П) и элементов платиновой группы. Трудности измерений в активных комплексах обусловлены тем, что образующиеся комплексы почти все являются аква-комплексами, поэтому был исследован достаточно ограниченный круг систем. К нуклеофильным реакциям замещения относятся мономолекулярные реакции, для которых скорость реакции определяется разрывом связи при отщеплении основания Льюиса (механизм S.nI), а также бимолекулярные реакции, для которых скорость реакции определяется образованием связи координирующимся основанием и наблюдается много промежуточных продуктов с координационным числом 1 (механизм 5n2). Однако, когда координационное число равно 6, механизм реакций нуклеофильного замещения существенно иной, чем в случае тетраэдрического углерода. Этим отличием дело не ограничивается. Поскольку комплекс слабо связывает молекулы растворителя за пределами первой координационной сферы, они образуют вторую координационную сферу, причем это происходит не только в водных, но и в неводных растворах. Кроме того, комплексные ионы часто образуют с ионами-партнерами ионные пары. Обычно при замещении лигандов в комплексах реа ция начинается с обмена лигандами в координационной сфере. Если обозначить [c.247]


    Реакции замещения (образование ацетиленидов). Специфической особенностью ацетиленовых углеводородов является способность водородных атомов при тройной свяЗ И замещаться металлами с образованием металлических производных, называемых ацетиленидами. Так, например, в ацетилене при обработке его металлическим натрием последний постепенно замещает один, а затем и другой атомы водорода [c.84]

    Решение. В гетеролитических реакциях замещения образование новой связи происходит различными способами. Различают реакции нуклеофильного и электрофильного замещения. [c.175]

    Фтор и парафиновые углеводороды реагируют с силой взрыва, но если соблюдать осторожность, фторуглероды можно получить с хорошим выходом, хотя они имеют смешанный состав. Реакционная последовательность, вероятно, следующая замещение, расщепление углерод-углеродной связи, происходящее благодаря интенсивному нагреву, развиваемому в экзотермической реакции, и образование соединений с более высоким молекулярным весом, как конечных продуктов реакции свободных радикалов. [c.145]

    Экзотермичность присоединения по я-связи приводит к осуществимости этих реакций несмотря на меньшее, чем для реакций распада, значение предэкспоненциального множителя. Как и в случае внутримолекулярной реакции замещения, присоединение облегчено в случае образования пяти- и шестичленного циклов. [c.44]

    Рассмотрим пример, когда в реакции происходит разрыв и образование нескольких связей (назовем их реагирующими связями). Предположим, что заместитель связан с атомом, который принадлежит реагирующим связям. Ниже изображена схема смещений атомов в системе А...В...С, соответствующей реакции замещения А + ВС АВ + С (деформационные колебания здесь не рассматриваются)  [c.29]

    Суть различных механизмов, предложенных для истолкования реакций нуклеофильного замещения, сводится к рассмотрению синхронного или асинхронного (ступенчатого) их протекания. В первом случае в реакции замещения может происходить одновременный разрыв старой и образование новой связи. Следовательно, в образовании активированного комплекса участвуют обе частицы субстрат и реагент. Эксперимент подтверждает факт участия обеих частиц в стадии, определяющей скорость реакции с синхронным механизмом. Повышение концентрации каждого компонента ведет к возрастанию скорости, которая пропорциональна произведению этих концентраций. Если атом углерода, при котором протекает замещение, является оптически активным, то можно проследить за стереохимией реакции. [c.143]

    Так как замедление крекинга продуктами распада не связано с приближением реагирующей системы к состоянию равновесия (это можно доказать термодинамическими расчетами) остается предположить, что замедление реакций крекинга алканов обусловлено кинетическими причинами. Поскольку замедление связано с действием продуктов — ингибиторов, естественнее всего допустить механизм торможения заключается в том, что продукты — олефины связывают такие активные передатчики цепи, как атомы Н или радикалы -СНз и другие, с образованием менее активных радикалов путем реакций замещения или присоединения. [c.217]

    Реакции гидроксильного водорода. Образование алкоголятов Спирты — практически нейтральные вещества. Однако атом водо рода гидроксильной группы, обладая некоторой подвижностью, спо собен вступать в реакции замещения. Такая подвижность зависит в первую очередь, от взаимного влияния атомов кислорода и водо рода в молекуле спирта. Атом кислорода как более электроотрица тельный элемент, оттягивая электронную плотность от водород ного атома, способствует поляризации связи О—Н  [c.107]

    Связь С—M.g поляризована с образованием частичного отрицательного заряда на атоме углерода, в результате чего он проявляет нуклеофильный и основный характер в реакциях замещения (I) и присоединения (II)  [c.175]

    Во всех рассмотренных случаях реакций с линейным трехцентровым активированным комплексом происходит разрыв одной химической связи. Если бы этот разрыв предшествовал образованию новой химической связи, то энергия активации реакции была бы равна энергии разрыва связи, а такие реакции могут идти лишь при достаточно высоких температурах. Между тем все приведенные и многочисленные другие реакции замещения идут с измеримой скоростью при комнатной или, по крайней мере, при умеренно высоких температурах. Следовательно, новая связь А—В начинает образовываться при еще не разорванной связи В—D. Значит взаимодействие А с В начинается, когда еще существует молекулярная а- или я-орбиталь, связывающая В с D. [c.282]

    Более интересные свойства в реакциях присоединения проявляют другие функциональные группы, полученные из =51—ОН-групп с помощью реакций замещения (см. выше). Так, в группировке ( = 51—0—)зР (см. реакцию (1.6)) атом фосфора обладает неподеленной парой электронов, которые участвуют в образовании координационной связи между атомом фосфора и атомом, имеющим незаполненные. -орбитали  [c.25]


    Реакция с элементарным фтором. При смешении углеводорода с фтором могут происходить химические реакции нескольких типов. Их можно классифицировать следующим образом 1) замещение атома водорода фтором 2) присоединение фтора по непредельной с5 -.и 3) разрыв цепи по углерод-углеродной связи 4) образование высокомолекулярных соединений через свободные радикалы как промежуточные соедит1ения. Поскольку образование связи углерод — фтор является сильно экзотерми- [c.68]

    Типы реакций, используемые для построения гетероциклических соединений, обсуждались в предыдущих главах. Они включают и 8Е-реакции замещения, образование С—С-связи по реакциям Манниха и путем сложноэфирной и альдольной конденсации, образование енаминов и иминов, присоединение по Михаэлю с углеродными или гетероатомными нуклеофилами. Важным для получения пятичленных гетероциклов (Л-ЗЗв, М-3, М-12) является 1,3-диполярное циклоприсоединение, а для синтеза шестичленных гетероциклов (М-17, М-24)-гетерореакция Дильса-Альдера. [c.348]

    Для громе-изомера такое замещение с образованием достаточно прочного хелатного цикла невозможно, так как вторая замещающая группа не достигает противоположной вершины квадрата (комплекса платины) н, таким образом, нз одной цепи ДНК не будет одновременно выведено два азотистых основания, транс-Изомер комплекса платины мог бы связать только разные ветви двойной спирали ДНК, но транс-лигаилы легко вступают в реакции замещения и связь ветвей ДНК легко бы рвалась, т. е. ДНК могла бы продолжать участвовать в биопроцессах. [c.110]

    Реакция замещения активных радикалов менее активными, при которой радикалы атакуют более слабо связанный атом Н метильной группы молекулы пропилена или изобутилена (энергия атакуемой С Н-связи метильной группы молекулы пропилена равна 77 ккал вместо 90 ккал для той же связи в молекуле пропана [64]) и отрывают атом водорода с образованием аллильных радикалов, имеет более высокую энергию активации (порядка 10—15 ккал) и низкий стерический фактор (порядка 10- —10- ). Казалось бы, что реакции присоединения радикалов к олефинам должны преобладать над реакциями замещения, которые характеризуются более высокими величинами энергий активации и таким же низким значением стерических факторов. Поэтому механизм торможения, сопряженный с присоединением радикалов, с кинетической точки зрения должен бы иметь преимуще1ства. Однако в условиях крекинга алканов реакции замещения активных радикалов менее активными, протекают более глубоко, чем реакции присоединения радикалов, которым благоприятствуют низкие температуры. С другой стороны, алкильные радикалы типа этил-, изопроцил- и третичных изобутил-радикалов, несмотря на свою большую устойчивость по отношению к распаду, более активно по сравнению с аллильными радикалами вступают в реакции развития цепей, как пока-зы вает сравнение их реакционной опособности [65]. Малоактивные радикалы, способные замедлить скорость цепного процесса, тем не менее обладают остаточной активностью, отличной от нуля, по величине которой они могут между собой различаться [66]. Именно эта остаточная активность малоактивных радикалов, соответстоующая как бы более низкому качеству свободной валентности радикала (некоторой степени выравнивания электронного облака по всей частице радикала), является причиной того, что и малоактивные радикалы способны в соответствующих условиях развивать цепи, вследствие чего наступает предел тормозящего действия продукта реакции или добавки ингибитора. При этом скорость уменьшается с увеличением концентрации тормозящей добавки только до некоторого предела, а [c.33]

    При реакциях замещения образование соединений, изомерных тем, которые должны были бы получаться в соответствии с принципом наименьшего структурного изменения, может происходить в за висимости от структуры исходного соединения по различным путям. При наличии в а,В-положении к углеродному атому, при кoтopo [ находятся замещаемые атом или группа, кратной связи новый заместитель может образовывать связь не с этим атомом, а с атомом углерода, находящимся при кратной связи в В-положении одновременно происходит смещение кратной связи, например  [c.444]

    Протекание замещения через карбанионный интермедиат вышеприведенного типа может быть подтверждено несколькими экспериментальными фактами. Одно из важных свидетельств в пользу этого механизма заключается в том, что все 1-замещенные 2,4-динитробензолы, в которых замещаемый 1-заместитель представляет собой С1, Вг, I, СеНабОг или га-К02СвН40, реагируют со вторичным амином — пиперидином — почти с одинаковой скоростью, несмотря на то что разрываемая связь С 2 различна в разных случаях. Поэтому непригоден ни один из механизмов, который включает гетеролиз связи С — 2 на лимитирующей стадии, и бимолекулярный механизм, соответствующий 2у2-реакции для насыщенных соединений, может вообще не рассматриваться. С другой стороны, небольшие различия в скоростях замещения Ъ нуклеофилом могут быть объяснены, если принять, что лимитирующей стадией реакции является образование связи С — N без одновременного гетеролиза С — 2-связи. Это означает, что в ходе замещения действительно образуется карбанионный интермедиат. [c.222]

    Реаз ции бромирования с образованием длбромидов проводились с использованием N-бромзамещонпого имида янтарной кислоты [И] или N-бромацетамида [12], но замощение брома нри атоме углерода, примыкающего к двойной связи, иногда имеет место при применении и этих реагентов. Органические перекиси катализируют реакцию замещения. [c.366]

    При наличии в молекуле парафиновых углеводородов группы N0 атомы водорода у того углеродного атома, с которым соединена нитро-группа, весьма подвижны и склонны к реакциям замещения на различные атомы (например, галоиды) и группы (например, на алкилариламино- и диалкиламиногруппы). В связи с подвижностью этих атомов водорода возможны реакции конденсации нитропарафинов с альдегидами и-кетопами с образованием нитроспиртов, нитрогликолей и других соединений, которые используются в качестве растворителей, а также окислителей для производства эмульгирующих средств. Нитроспирты в свою очередь склонны ко многим реакциям превращения, в результате которых образуются эфиры и другие ценные соединения. [c.131]

    Интересной областью использования активирования олефинов при их изомеризации является присоединение к ним галоген- и кислородсодержащих соединений. Выше было отмечено, что по радикальному механизму возможно образование аддуктов, но они-рассмотрены применительно к олефинам с внутренней двойной связью. Аналогичным будет и возбуждение а-олефинов, но его нельзя выявить по изменению химического состава олефинов. Вместе с тем если концентрация присоединяющихся радикалов, а следовательно, и радикалообразователей будет достаточно высока, образующиеся радикалы-аддукты будут в заметных количествах участвовать в реакциях замещения с образованием стабильных продуктов. . - [c.81]

    Химически алканы очень инертны, хотя низшие из ннх способны гореть в кислороде с образованием диоксида углерода и воды в воде практически не растворимы и не вза1шодс йству]от с химические реакции замещения осуществляются путем разрыва связен С—Н и цепи углеродных атомов. Поскольку эти связи очень мало поляризованы, для них характерны лишь реакции замещения, протекающие по так называемому свободнорадикальному цепному механизму. [c.144]

    В кислой среде (pH 1ч-2) трихлорфенол превращается в основном в олигомерные продукты, растворимые в щелочи с выходом до 25% и со средним числом ароматических ядер в цепи до 5. Продукты содержат 8—9% ОН, 38,8—40,0% хлор1а судя поданным элементного анализа, в этих продуктах содержится до 5% кислорода, входящего в состав эфирной группы С аром-о-С аром. Такое содержание хлора и ОН-групп позволяют рассматривать образующиеся олигомерные продукты как имеющие структуру, где на каждое ядро приходится по фенольному гидроксилу и двум атомам хлора. Образование подобных продуктов может протекать за счет реакции окислительного замещения галогена, образующегося в ходе реакции феноксирадикалами, реагирующими в различных мезомерных формах, что приводит к образованию связей Саром-Саром и Саром-о- [3]. [c.147]

    Инертность парафинов к реакциям присоединения объясняется тем, что все свободные связи углеродных атомов насыщены в них до предела водородом, т. е. вся свободная энергия связи в молекуле использована на образование связей С—Н. Химическая пассивность парафинов объясняется также и тем, что все связи в их молекулах являются гомеополярными. Парафины разветвленного строения, имеющие в молекуле один или несколько третичных атомов углерода, более реакциопноспособны, чем нормальные парафины, они пегко вступают в реакции замещения с азотной и серной кислотами л другими реагентами. [c.54]

    Присоединение хлора к двойной углерод-углеродной связи не является столь простой реакцией, как это принято писать в учебниках. Низкие температуры, например -25°С, способствуют образованию дихлорида, а при более высоких температурах идет реакция замещения. Реакции благоприятствует наличие некоторого количества жидкого 2H4 I2. В качестве катализаторов используются хлориды меди на носителе. Реакция сильно экзотермична, ее следует вести при минимально возможной температуре и принимать меры, облегчающие отвод тепла. Процесс можно вести в реакторе со стационарным или псевдоожиженным слоем катализатора. [c.343]

    Наряду с основной реакцией замещения хлора фенильной группой или остатком алкилбензола наблюдаются и вторичные процессы циклизация некоторых звеньев и образование поперечных связей между макромолекулами. [c.271]

    Галогенирование ненасыщенных углеводородных полимеров полиизопрен, полибутадиен, полихлоропрен) также протекает по-разному в зависимости от химической природы исходного полимера. Наиболее простое взаимодействие путем присоединения галогена к двойной связи полидиенов имеет место лишь при строгом соблюдении ряда условий реакции. Обычно наряду с присоединением происходит и реакция замещения водорода, а также образование диклических структур (внутримолекулярные превраш,ения) и сши-вания (межмакромолекулярные реакции). [c.280]

    Существуют экспериментальные критерии, позволяющие судить о характере разрыва связи С—N в диазоний-катионе при реакциях замещения. Так, если проводить приведенные выше реакции в присутствии нитробензола или ацетофенона, то помимо основного продукта реакции побочно образуются производные бифенила. В случае гетеролитического разрыва образовавшийся фенил-катион (как и любая другая электрофильная частица) предпочтительно атакует лсега-положение по отношению к нитрогруппе с образованием 3-нитробифенила  [c.455]

    ГЕТЕРОЛИТИЧЕСКИЕ И ГОМОЛИ-ТИЧЕСКИЕ РЕАКЦИИ — реакции, протекающие с разрывом ковалентной связи, при которой электронная пара, образующая эту связь, целиком или частично остается у одного из атомов (гете-ролитическое расщепление) или разрывается и неспаренные электроны переходят к каждому из атомов (гемолитическое расщепление). Гетеролитическое расщепление энергетически менее выгодно, чем гомолитическое и почти никогда не происходит в газовой фазе. В риство-рах возможны оба типа реакций. В органической химии гетеролитические реакции делят на нуклеофильные и электро-фильные в зависимости от характера разрыва связи С—Я (Я — атом всдоро-да или замещаемая группа) если электронная пара переходит к Я, это называется нуклеофильным замещением, а когда электронная пара переходит к С — электрофильным замещением. Следовательно. нуклеофильные агенты должны иметь неподеленную электронную пару (ионы ОН , С1 , СЫ , аммиак Нз), электрофильные должны иметь вакантную электронную оболочку (галсгены, ионы водорода H-f). Гомолитнческие реакции сопровождаются образованием свободных радикалов или активированных комплексов. Характерной особенностью гемолитических реакций является ускорение их при помощи действия [c.70]

    Электрохимические методы открывают щирокие возможности для синтеза различных органических соединений. Так, на катоде можно осуществить восстановление двойных и тройных связей, причем соединения с двойными связями часто вступают в реакцию электрохимической димеризации с образованием гидродимеров. Описаны реакции электрохимической гидроциклизации, катодного восстановления нитросоединений, нитрилов и других веществ с различными функциональными группами, катодное отщепление галоидов от галоидорганических соединений. На аноде могут быть окислены разнообразные органические вещества, осуществлены реакции замещения и присоединения, например электрохимическое фторирование  [c.226]

    Чатт и Оргел связали этот дополнительный эффект с особенностью строения промежуточного активированного ко.мплекса при существенной роли л-взаимодействий. Предполагается, что реакция замещения идет по ассоциативному механизму, где скорость определяется образованием промежуточного соединения, включающего старый (L2) и /(овый (L) атакующий лиганды. При замене ли1 анда [.2 па L (рис. 8.4) донорные электроны L должны нзаимоденствовать с орбиталью металла , образующей о- [c.393]


Смотреть страницы где упоминается термин Реакции замещения с образованием С связи: [c.415]    [c.168]    [c.476]    [c.82]    [c.241]    [c.386]    [c.147]    [c.143]    [c.216]    [c.381]    [c.381]    [c.166]    [c.41]    [c.181]   
Каталитические свойства веществ том 1 (1968) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Реакции замещения

Реакции образования связей



© 2025 chem21.info Реклама на сайте