Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионов связывание с белками

    Разность между прибавленным количеством водородных или гидроксильных ионов и найденным из измерений pH дает количество этих ионов, связанных белком. Это количество обычно выражается в эквивалентах водородных ионов на грамм белка и обозначается буквой h. В кислой области от изоионной точки h положительно, в щелочной области — отрицательно. На рис. 25 показано связывание водородных ионов яичным альбумином. [c.160]


    Связывание белками различных ионов зависит главным образом от валентности последних. Одновалентные ионы щелочных металлов и ион хлора связаны лишь в ничтожной степени, и основная масса их в тканевых жидкостях находится в свободном состоянии. Ионы же кальция, магния и фосфата в тканевых жидкостях, наоборот, в значительной своей части связаны с белками. [c.86]

    При достаточно больших конформационных изменениях белка может произойти тесное сближение карбоксильной и SH-группы, приводящее к самопроизвольному образованию тиоэфирной связи. Затем, когда белок вновь примет ненапряженную конформацию, в полной мере сможет проявиться высокоэнергетический характер тиоэфирной связи, и она сможет вступить в обменные реакции, приводящие к синтезу АТР. Другой возможностью является связывание белком ADP и неорганического фосфата на близко расположенных участках. Тогда после соответствующих конформационных изменений эти два компонента могут быть буквально прижаты друг к другу с самопроизвольным удалением ОН-иона и образованием АТР и НгО. [c.414]

    Другие типы моноядерного комплексообразования в водных растворах включают связывание ионов металла белками или синтетическими полиэлектролитами. Эти системы удобно рассматривать, предположив, что ионы металла выступают в качестве лигандов по отношению к центральному полимеру [33, 67]. Комплексы могут также образовываться между двумя органическими ионами, например ионами анилиния и пикриновой кислоты [58], или между двумя белками. В окислительновосстановительном равновесии электрон можно рассматривать как лиганд, а состояние наивысшей степени окисления — как центральную группу [11, 45]. Смешанные моноядерные комплексы, которые содержат более одного типа лигандов, обсуждаются в гл. 18. [c.17]

    Многие биохимические процессы зависят от степени ионизации участвующих в них молекул. К их числу относятся реакции, катализируемые фермен-тами, связывание белками различных ионов, процесс переноса кислорода с участием гемоглобина, конформационные изменения белков и других био-полимеров, поведение малых и больших молекул при электрофоретическом и хроматографическом разделении и т. д. Мы начнем поэтому наше рас-смотрение с проблемы протолитического равновесия. [c.17]

    Степень связывания ионов белками можно определять различными методами из них наиболее широко распрострапен метод равновесного диализа. При диализе (так же как и при осмометрии) используют мешочек, стенки которого непроницаемы для молекул белка, но проницаемы для небольших ионов. Диализный мешочек с раствором белка помещают в раствор, содержащий необходимый ион. После установления равновесной концентрации диффундирующего иона по обе стороны мембраны измеряют концентрацию иона в растворе, не содержащем белка разность начальной и конечной концентраций иона в не содержащем белка растворе позволяет определить концентрацию иона в растворе белка. Если концентрации иона по обе стороны мембраны равны друг другу, то это означает, что связывания не произошло. Если связывание имело место, то концентрация иона в белковом растворе должна быть выше, чем в растворе, не содержащем белка разность концентраций может служить мерой числа ионов, связанных с одной молекулой белка. Для того чтобы исключить влияние эффекта Гиббса — Доннана, равновесный диализ проводят обычно либо в изоэлектрической точке белка, либо при высокой ионной силе. Такие методы, как ультрафильтрация, распределительный анализ, а в некоторых случаях и адсорбционная спектрофотометрия, также могут служить для определения степени связывания ионов с белками. [c.73]


    Объясните особенности связывания СО, СО2, СК и других молекул и ионов гемсодержащими белками. [c.230]

    Влияние pH на связывание белков с полистиролами X, Y и Z продемонстрировано на рис. 4.7, 4.8 и 4.9 соответственно. Сорбирующая способность полистирола X, имеющего гидрофобную поверхность, сильно зависит от pH и ионной силы раствора (рис. 4.7). Оптимальные результаты были получены при использовании буферного раствора с низкой ионной силой и pH, соответствующим изоэлектрической точке белка. Связывающая способность полистирола Y гораздо менее чувствительна к изменению pH и ионной силы буферного раствора (рис. 4.8). Оптимальная сорбция [c.61]

    Хроматография на ДНК-целлюлозе в первую очередь используется для очистки белков, связывающихся с ДНК. Смесь белков и буфере с низкой ионной силой (условия связывания белков с ДНК) пропускают через колонку. Затем колонку промывают для удаления несвязанных белков и элюируют в градиенте возрастания ионной силы. Белки при этом элюируются в порядке З еличения прочности связывания. [c.215]

    Таким образом, гибкая 12-членная петля, ограниченная с двух сторон а-спиральными участками и обозначаемая как EF-рука, способна формировать высокоспецифичные центры связывания ионов Со", обладающие высоким сродством к этому иону. Внутриклеточные белки, относящиеся к семейству EF-руки, могут выступать в роли сенсоров кальция и регулировать активность многих белков и ферментов. Именно белки семейства EF-руки участвуют в регуляции сократительной активности мышц различного типа. [c.215]

    И структурные белки. Несомненно, что их роль не только механическая. Доказано, что структурным белкам присущи и каталитические функции. Эти функции особенно ярко проявляются у мышечного сократительного белка миозина. Исследования В. В. Эн-гельгардта и Н. А. Любимовой показали, что миозин ускоряет взаимодействие с водой (т. е. гидролиз) важнейшего аккумулятора энергии — аденозинтрифосфорной кислоты (АТФ). При этом получается аденозиндифосфорная кислота и фосфат. Энергия реакции используется мышцей, во время работы которой нити белка миозина сокращаются. Следовательно, этот белок выполняет двойную нагрузку он регулирует освобождение энергии и он же потребляет энергию, сокращаясь в процессе работы мышцы. Молекула миозина представляет собой длинную цепь — ее длина равна примерно 160 нм, а молекулярная масса достигает 600000, Кроме миозина, известны и другие мышечные белки (актин, тро-помиозин), Для того чтобы эти белки могли осуществлять обратимое сокращение, необходимо присутствие катионов металлов, вообще активно поглощаемых мышечными белками. Для работы мышцы требуются ионы калия, кальция, магния, нужен также запас фосфатов, используемых для синтеза АТФ, Связывание ионов металлов и водорода с ионными группами белков сильно влияет на взаимодействие участков цепи и приводит к изменению ее длины. Однако механизм мышечного сокращения более сложен и, по-видимому, связан с особым расположением нитей миозина и актина в мышце, позволяющих частицам актина при работе мышцы скользить вдоль нитей миозина. Из числа растворимых белков особенно важны альбумины и глобулины. [c.62]

    Многие белки в противоположность приведенным выше примерам связывают ионы металлов либо временно, либо в течение всего времени их существования в организме. Ранее уже упоминался пример временного связывания Са + в связи с протеолитической активацией протромбина и других компонентов системы свертывания крови (см. разд. 24.2.1.2). Иной случай представляют щелочные фосфатазы и фосфокиназы, где, по-видимому, для экранирования отрицательных зарядов фосфатной группы для облегчения атаки атома фосфора нуклеофилом требуется ион двухвалентного металла типа Mg + или Zn +. Более постоянное связывание ионов металлов белками может служить для выполнения одной из указанных ниже целей. Ионы Са + предохраняют трипсин от автолиза. Конкавалин А (см. ниже) не связывает производных глюкозы до тех пор, пока не свяжет предварительно один ион Са + и один ион Мг 2+ на субъединицу. В данном случае катионы, по-видимому, осуществляют подгонку конформации молекулы, образуя центр связывания глюкозы. Ионы металлов принимают также участие в формировании активных центров ферментов. По- [c.561]

    Одним из последних вариантов лигандообменной хроматографии явилась аффинная хроматография на хе-латах металлов , представляющая собой гибрид лигандообменной и аффинной хроматографии. В металло-хелат-аффинной хроматографии активные ценгры насадок, на которых происходит сорбция, обычно представляют собой систему ион переходного металла - иминодиацетатная группа, связанная с матрицей сорбента достаточно длинной группировкой. Связывание белка с системой металл -иминодиацетат - матрица происходит благодаря образованию координационных связей. Обычно процесс проводят в интервале значений pH от 6 (ацетатный буфер) до 8 (фосфатный буфер). Металло-хелат-аффинная хроматография представляет в первую очередь интерес как препаративный метод биохимии. [c.211]


    Ряд алкилагароз со структурой СНз(СН2)пМН—сефароза (где п принимает значения от О до 7), и-аминоалкилагароз со структурой ЫН2(СН2)п ЫН—сефароза (где п — от 2 до 8) характеризуется близким содержанием алкильных боковых цепей на гранулу геля [15, 49]. В одинаковых условиях (pH, ионная сила, состав буферного раствора и температура) способность СНз(СН2)пЫН—сефарозы удерживать фосфорилазу Ь зависит от длины углеводородных цепей. При хроматографии на производных сефарозы (я = 0 или 1) фосфорилаза Ь выходила из колонки с фронтом растворителя при п = 2 происходила задержка фермента, а при п = 3 фермент адсорбировался. Элюирование фосфорилазы Ь с модифицированной сефарозы (п = 3) возможно с помощью деформирующих буферных растворов, которые, как было показано, приводят к обратимым структурным изменениям фермента. На производном сефарозы с л = 5 связывание фосфорилазы было настолько сильным, что фермент не элюировался с колонки, даже когда pH деформирующего буферного раствора понижался до 5,8, хотя деформирующая способность такого буфера намного выше. Освободить фосфорилазу Ь из комплекса с этим производным можно только в неактивной форме после промывки колонки 0,2 М уксусной кислотой. Сама агароза содержит отрицательные заряды, а связывание алкил- или ариламинов на активированной бромцианом агарозе вводит в гель положительные заряды (разд. 8.2.4). В связи с этим йост и др. [28] обращали внимание на то, что на сефарозе с алкиламинами, прикрепленными после предварительной активации носителя бромцианом, связывание белков происходит большей частью при pH выше изоэлектрической точки выделяемых белков. Поэтому допускалось, что в этих случаях электростатические взаимодействия с положительно заряженной Ы-замещенной изомочевиной более существенны для связывания, чем гидрофобные взаимодействия с гидрофобной боковой цепью. Тем не менее гранулы агарозы не связывают фосфорилазу Ь, пока к ним не будут прикреплены алкильные боковые цепи некоторой минимальной длины. Кроме того, отмеченные выше заряды в равной мере присутствуют во всех членах гомологического ряда, и, следовательно, они не могут быть причиной различий в степени [c.152]

    Развитие новых направлений биосенсометрии, видимо, будет зависеть от успехов микроэлектроники, основанной на применении продуктов биотехнологии, например ферментов и антител. Недавно были созданы ион-селективные транзисторы на основе полевого эффекта (РЕТ ы) в таких устройствах на изолирующий слой транзистора помещается мембрана с избирательной проницаемостью. На поверхность транзистора можно было бы-нанести ферменты и антитела так, чтобы он чувствовал связывание белка и/или возможные его конформационные изменения и/или реакцию с субстратом. Первым шагом здесь является разработка чувствительного к пенициллину FET a, в котором применен фермент пенициллиназа ( aras, Janata, 1980). [c.346]

    Ртути дихлорид (сулему) используют для пропитки дерева, в производстве аккумуляторов, для дезинфекции, в красках для необрастания подводных частей морских судов ракушками и водорослями, в фотографии и для получения других ртутных препаратов. Она обладает бактерицидным действием, которое резко ослабевает в присутствии белковых веществ, что объясняется связыванием ионов ртути белками. Ртути дихлорид нельзя применять для дезинфекции инструментов (реагирует с металлами). [c.200]

    В миоглобинах и мономерных гемоглобинах возможно только гетеротропное взаимодействие. Лишь в последнее время был обнаружен отчетливо выраженный эффект Бора у двух гемоглобйнов hironomus [86] и одного гемоглобина Gly era [148]. Для миоглобинов млекопитающих таких отчетливых эффектов не найдено, однако ряд слабых гетеротропных взаимодействий обнаружен и здесь, например влияние pH (эффект Бора) на связывание кислорода [8] и СО [228], влияние координации кислорода на связывание ксенона и ионов цинка белком [129], а также влияние ксенона на координацию СО и N и на р/С Ре ЮНг [56, 128]. Рентгеноструктурный анализ показал, что связанный ксенон занимает единственное хорошо определенное место рядом с координированным имидазолом [198], однако ионы цинка координируются в положения, расположенные далеко от железопорфирина [12]. [c.170]

    Уникальность белков состоит в том, что они могут менять свою конформацию, делая поверхность комплементарной лиганду, например активный центр фермента — субстрат (по Кошланду). Различные лиганды связываются с белковыми молекулами по центрам связывания. Очевидно, что эти центры должны быть комплементарны функциональным группам лиганда. Связи между лигандом и центром связывания белка нековалентные (водородные, ионные, гидрофобные), поэтому такое связывание обратимо. Мономерные белки связываются с лигандом по гиперболической зависимости мультимерные — по сигмоидной зависимости из-за кооперативного эффекта. Связывание белка с лигандом зависит от числа мест (центров) связывания и количества молекул лиганда. Если оно превышает число центров связывания на белке, дальнейшего связывания не происходит (белок насыщен лигандом). Специфическое взаимо-ыдействие за счет комплементарных поверхностей объясняет большинство функций белков (фермент — субстрат гормон — рецептор антиген — антитело и т.д.) [c.48]

    Эффективная концентрация подвижного противоиона в заряженных полимерах. Впервые фундаментальный анализ неидеального поведения заряженных полимеров типа белков был осуществлен Линдерстрём-Лангом [30]. Предложенная им сложная трактовка в более удобной форме была пересмотрена Скетчардом [31], что в значительной степени облегчает изучение ионного связывания в сложных белковых системах. Строгие выводы Скетчарда были в точности воспроизведены Тен-фордом [32], который дал упрощенную версию трактовки Лин-дерстрём-Ланга. Согласно этой трактовке, р/С ионизуемых групп белка, предположительно абсолютно независимых одна от другой, является функцией заряда [c.376]

    ДОЛЖНО происходить за счет тех же множестьенных сил, которые ответственны за стабилизацию третичной и четвертичной структуры белков. И лишь для субстратов значительно меньшего молекулярного веса могут оказаться успешными попытки оценить индивидуальные силы связывания в чистом виде . Связывание белками различных небольших молекул, например неорганических ионов и некоторых ароматических структур, изучалось совершенно независимо от развития проблем ферментативного катализа. Но при этом были получены результаты, имеющие важнейшее значение для понимания механизма образования фермент-субстратных комплексов. [c.57]

    Штейнгардт выя С1нил роль, которую играют анионы в кислотном титровании белков. Связывание анионов значительно увеличивает количество водородных ионов, удерживаемых белком. [c.161]

    Характеристическая красная и желтая окраски комплексов железа и меди с сидерофилинами не развиваются в отсутствие бикарбоната. Отсюда следует, что этот ион играет главную роль в комплексообразовании металлов с белками [5]. Прямое измерение количества двуокиси углерода, выделяющейся при кислотной денатурации комплексов с железом [42], медью [69], хромом, марганцем и кобальтом [45], подтвердило сделанное ранее предположение Шэйда [5] о том, что на каждый связанный ион металла связывается один бикарбонатный ион. Связывание бикарбоната не является обязательным, и это было продемонстрировано серией исследований связывания металла с трансферрином методом спектроскопии электронного парамагнитного резонанса, которые показали, что специфическое связывание, по крайней мере железа и меди, может происходить и в отсутствие бикарбоната [70]. Образующиеся при этом комплексы были бесцветны и поэтому недетектируемы до появления метода ЭПР. Очевидно, в отсутствие бикарбоната связь железо — белок гораздо слабее, чем в его присутствии, так как при стоянии не содержащего бикарбоната комплекса железа с трансферрином при нейтральных или более высоких значениях pH наблюдается гидролиз железа с образованием нерастворимого гидроксида железа(III). Возможная физиологическая роль этого эффекта будет обсуждена в разделе, посвященном биологическим функциям сидерофилинов. [c.344]

    Многие из общих подходов к исследованию механизма действия ферментов также применимы и к изучению роли ионов металлов в ферментативном катализе. Схемы координации, описывающие взаимодействие фермента, металла и лиганда, могут быть изучены методами, применяемыми при определении стехиометрии и сродства связывания белками небольших молекул. Эти методы включают гель-фильтрацию в присутствии или в отсутствие небольших молекул [49], метод скоростного диализа [50], ультрафильтрацию, метод ультрацентрифугирования по Хейесу — Велику [52], равновесный диализ [53], а также методы для измерения только сродства взаимодействия [54—58]. Выбор схемы координации ионов металлов и лигандов с ферментами с помощью этих методов возможен только при отсутствии влияния других факторов. Например, если образуется комплекс Е — лиганд — М +, фермент должен проявлять значительное сродство к иону металла только в присутствии лиганда. И, наоборот, если образуется комплекс Е — М + — лиганд, то не должно происходить значительного связывания лиганда в отсутствие иона металла. Однако практически ферменты часто проявляют склонность к связыванию обоих компонентов комплекса, невзирая на выбранную схему координации. Следовательно, важны данные, полученные с учетом стехиометрических и кинетических критериев. Такие важные типы комплексов, как Е — лиганд — М + и Е — М + — лиганд, обычно содержат все три компонента в эквимолярных количествах. Более [c.449]

    Множество проблем, описанных выше для алкогольдегидрогеназы, не являются особенностью этого фермента. Аналогичные трудности могут встретиться для любого металлофермента, если не применять со всей строгостью критерии Вейлли [4], предложенные для идентификации таких ферментов, а именно 1) прочное связывание иона металла белком 2) ловышение -соотношения металл — белок и специфической активности фермента в ходе его очистки 3) постоянное число грамм-атомов металла на моль очищенного фермента и 4) постоянное соотношение между содержанием металла и содержанием кофактора (или его связыванием). Хотя эти критерии вполне применимы для идентификации простых металлоферментов, например алкогольдегидрогеназы из дрожжей, в которой связанный металл и активные центры присутствуют в эквимолярных количествах, они могут привести к ошибкам в более сложных случаях, примером чего может служить история исследований алкогольдегидрогеназы из печени. В последнем случае получению ошибочных результатов также способствовала неопределенность в молекулярной массе и молярном коэффициенте поглощения фермента [91], и надо заметить, что неточность в определении этих параметров также приводит к ошибочному определению соотношения металл — белок. [c.459]

    Таким образом, можно полагать, что необратимое связывание белков обычными гелевыми сетчатыми карбоксильными полиэлектролитами обусловлено способностью сеток к значительной деформации при повышении значения pH и ионной силы, приводяш ей к усилению дополнительного взаимодействия с сорбированными молекулами белка. Для сорбции белков перспективны малодеформирую-гциеся при изменении значения pH и ионной силы сетчатые полиэлектролиты, получаемые преимущественно на основе гидрофильных длинноцепных дивиниль-ных соединений или поливинильных соединений разветвленной структуры. [c.218]

    Другой областью применения гель-хроматографии в биохимии является отделение белков от низкомолекулярных мешающих анализу примесей, например аминокислот, сахаров, стероидов или реагентов, используемых для химической модификации белка. Методом гель-хроматографии чаще всего удаляют реагенты, предназначенные для введения в белок радиоактивной и флуоресцентной меток. Гель-хроматография позволяет также быстрее и эффективнее, чем диализ, осуществить обессолива-ние или смену буфера, требуемые в определенных схемах фракционирования, а также удаление кофакторов и ингибиторов, используемых при изучении кинетики ферментативных реакций. Кроме того, с помощью этого метода можно изучать связывание белков с низкомолекулярными соединениями, например лекарственными веществами, ионами металлов и красителями [10]. Коэффициент распределения Ка некоего стандартного белка с из- [c.106]

    Следовательно, ингибирование активного мембранного транспорта под действием ионизирующего излучения происходит в клетках различных типов, в разных условиях облучения в широком диапазоне доз. Предполагают, что сохранение жизнедеятельности клеток при дезактивации натриевого насоса связано с включением компенсаторных механизмов поддержания гомеостаза. Например, в мембранах эритроцитов при торможении активности Ка % К -АТФазы активность Са -АТФазы превыюает контрольный уровень, а в плазматических мембранах печени увеличивается Мё -АТФазная активность. Известно, что Са и способствуют связыванию белков, в том числе АТФаз, с мембраной. В липидных бислоях Са обеспечивает образование мостиков между фосфатидами, в результате которого упаковка липидной фазы становится более плотной и уменьшается проницаемость мембраны. Кроме того, после рентгеновского облучения животных в дозе 5 Гр обнаруживается повышение активности щелочной фосфатазы, связанной с плазматическими мембранами клеток печени мышей. Щелочная фосфатаза — интегральный фермент плазматических мембран некоторых клеток —-участвует в активном транспорте ионов На" и К . [c.145]

    При выяснении роли белка 5-100 большинство исследователей придает особое значение взаимосвязи 5Н-групп данного белка с ионами Са2+, поскольку белок 5-100, соединяясь с Са2+, изменяет свою конфигурацию. При этом на наружной поверхности молекулы белка возрастает число гидрофобных групп, белок 5-100 становится более раствор1Имым в липидах и легче проникает внутрь мембраны, где содержится повышенное количество ионов К . Здесь происходит связывание белка 8-100 с К , что приводит к конформационным изменениям белка. Эта новая форма белка плохо растворяется в липидах, ибе-> лок направляется обратно на внешнюю поверхность, мембраны, где происходит отщепление К+ и снова ионы Са + присоединяются к белку 8-100. По мнению Хидена, в постсинаптпче-ских мембранах кроме данного белка участвуют актиногюдоб-ные белки, входящие в состав филаментов. К этим белкам также легко присоединяются ионы Са +. Таким образом, происхо- [c.148]

    Теоретически существуют два общих метода элюции белков-(не считая аффинной элюции, разд. 4.4) а) изменение pH буфера до величины, при которой связывание белка с адсорбентом ослабевает для анионообменников используют более низкие значения pH, а для катионообменников — более высокие б) повышение ионной силы, что вызывает ослабление электростатического взаимодействия между белком и адсорбентом. На практике метод а не всегда дает хорошие результаты. Это объясняется тем, что цри недостаточно высокой буферной емкости резкое и значительное изменение pH по мере элюции белков приводит к плохому разделению индивидуальных компонентов. При-низкой ионной силе буферная емкость должна быть низкой, и попытка изменить значение pH, используя градиент pH, оказывается тщетной из-за буферной силы белков, адсорбированных на колонке, а в случае использования ДЭАЭ-адсорбентов— из-за буферных свойств самого адсорбента. Типичный результат показан на рис. 4.12. Градиент pH может быть успешно использован только тогда, когда интересующие нас белки первыми и очень прочно адсорбируются на ионообменнике. В этом случае можно использовать сильное забуферивание растворов при ионной силе 0,1 и больше. В одной из работ [29] была предложена схема получения сильных буферных градиентов pH при постоянной ионной силе. [c.113]

    Однако на практике все оказывается значительно сложней, чем в теории. При адсорбции всегда используют буферные растворы, обычно фосфат, и ионы буфера сами сорбируются на неорганических материалах. Поэтому гидроксилапатит. может иметь полностью отрицательно заряженную поверхность для связывания белка (рис. 4.50, Б). Повышение концентрации буфера приводит к конкуренции между белком и ионами буфера за заряженные участки на поверхности адсорбента, что напоминает типичную картину ионного обмена. Детальное обсуждение этих эффектов, а также количественные данные по адсорбции некоторых белков на гидроксилапатите и Т102 представлены в работах [109, 110]. [c.179]

    Интересной разновидностью является электрофорез в изоэлектрической точке [133], который проводят, если ее значение известно для нужного фермента. Белковую смесь готовят в буфере при pH, соответствующем изоэлектрической точке этого, фермента. Образец помещают в канавку, сделанную в агарозном геле, и начинают электрофорез. Фермент остается в канавке, тогда как загрязняющие белки движутся в обоих направлениях (рис. 5.15). Исходное требование — найти значение рН при котором фермент не будет двигаться. Оно может отличаться-от изоэлектрической точки, определенной методом изоэлектрического фокусирования (см. разд. 5.3). Изоэлектрическая точка часто зависит от используемого буфера из-за связывания белком буферных ионов. Связывание фосфат- и цитрат-ионов — это-обычное явление, которое приводит к снижению изоэлектриче ской точки. При изоэлектрическом фокусировании проводится аппроксимирование к нулевой концентрации буфера, и найденное при этом значение на самом деле представляет собой изо-ионную точку , т. е. значение pH, при котором отсутствует связывание ионов с белковой молекулой. [c.218]

    Как амфолиты, белки связывают и катионы, и анионы. Специфическое связывание белками небольших ионов, например иона Са +, играет важную роль в физиологических процессах. Некоторые органические и неорганические вещества легко осаждают белки из растворов. К таким веществам относятся трихлоруксусная, пикриновая, фосфовольфрамовая кислоты, а также ионы тяжелых металлов, такие, как Hg + и Ва +. Многие нативные белки являются металлопротеинамн (конъюгированными белками) они специфически связаны с ионами Си +, 2п +, Ре + и Ре + в координационные комплексы с участием различных ионизованных групп. [c.138]

    Нитроцеллюлозные фильтры в определенных условиях способны связывать белки и одноцепочечные ДНК. Такое связывание может найти применение для большого числа ферментативных и физико-химических анализов, а также в качестве метода очистки различных препаратов. Связывающие свойства двух коммерческих нитроцеллюлозных фильтров представлены в табл. 7-1. Следует заметить, что связывание белков не зависит от ионной силы, однако одноцепочечные ДНК прочно удерживаются такими фильтрами только при относительно высокой ионной силе. Плохое связывание одноцепочечных ДНК с фильтром Millipore необъяснимо, хотя, может быть, оно обусловлено тем, что эти фильтры изготовлены не из чистой нитроцеллюлозы. РНК не связываются с этими фильтрами. [c.160]

    Металлы, относящиеся к легкой и тяжелой платиновым триадам, встречаются довольно редко, и их реакции еще недостаточно полно изучены. Все они обладают сравнительно низкой реакционной способностью и в природных условиях встречаются в виде свободных металлов. Наиболее важное значение для них имеют состояния окисления +2, 4- 3 и 4-4, находясь в которых эти металлы образуют в растворе октаэдрические или плоские квадратные комплексы. Комплексные ионы Р1(1У) и 1г(П1) имеют структуры октаэдра. Комплексы Р1(П) имеют плоское квадратное строение. Ион тетрахлороплатината(П), Р1С1 , обнаруживает большую склонность к связыванию с серой в белках и используется для получения производных белков, включающих тяжелые атомы, с целью проведения их рентгеноструктурного анализа. [c.446]

    Эти процессы приводят к образованию рацемических смесей. Однако считается, что при спонтанной кристаллизации происходило разделение смесн. Наиболее вероятно, что разделение проходило случайным образом. Видимо, определяющую роль в разделении оптически активных соединений путем селективного комплексоебразования одного определенного стереоизомера играли минералы, как, например, природные асимметричные кристаллы кварца, и ионы металлов. В конце К01Щ0В, стереоселективная полимеризация олефинов на поверхности металлов (катализаторы Циглера — Натта) представляет собой хорощо изученный промышленный процесс для получения изотактических полимеров. Известно также, что связывание ионов металлов весьма важно для многих биохимических превращений. Такое связывание существенно для поддержания нативной структуры нуклеиновых кислот и многих белков и ферментов. Процесс отбора оптических изомеров мог происходить вследствие других физических явлений, например взаимодействие с радиоактивными элементами, радиация или космические лучи. Недавно проведенные эксперименты с стронцием-90 показывают, что D-ти-роэин быстрее разрушается, чем природный L-изомер. Весьма заманчиво привлечь эти факторы для объяснения происхождения диссимметричности в процессах жизнедеятельности. [c.186]

    Следует заметить, что живые организмы имеют механизмы детоксикации в отношении тяжелых металлов. Так, в ответ на токсическое действие РЬ , С(1 и печень и почки человека увеличивают синтез ме-таллотионинов - низкомолекулярных белков, в состав которых входит цистеин. Высокое содержание в последнем сульфгидрильных 8Н-групп обеспечивает связывание ионов металлов в прочные комплексные соединения. [c.103]


Смотреть страницы где упоминается термин Ионов связывание с белками: [c.226]    [c.154]    [c.232]    [c.277]    [c.235]    [c.221]    [c.144]    [c.262]    [c.346]    [c.208]    [c.178]    [c.128]    [c.23]    [c.61]   
Катализ в химии и энзимологии (1972) -- [ c.275 , c.277 , c.304 ]




ПОИСК





Смотрите так же термины и статьи:

Связывание



© 2025 chem21.info Реклама на сайте