Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий с фосфором

    Отдельные тома серии Аналитическая химия элементов будут выходить самостоятельно, по мере их подготовки. Вышли в свет монографии, посвяш,енные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, плутонию, бериллию, прометию, технецию, астатину и францию, радию, ниобию и танталу, протактинию, кремнию, магнию, галлию, фтору, алюминию, селену и теллуру, никелю, РЗЭ и иттрию, нептунию, трансплутониевым элементам, платиновым металлам, золоту, германию, рению, фосфору, кадмию. Готовятся к печати монографии по аналитической химии кальция, лития, ртути, рубидия и цезия, серебра, серы, углерода, олова, цинка. [c.4]


    Цезий-137 (внешний источник) Фосфор-32 (внешний источник) Стронций-90 (внешний источник) Иридий-192 Иттрий-90 Золото-198 Облучение мелких опухолей Облучение раковых опухолей кожи Лечение заболеваний глаз Лечение глубоко расположенных опухолей Внутренняя обработка рака слизистой с помощью керамического шарика Лечение рака в полостях организма вводится в полость в виде коллоидного раствора [c.350]

    Свинец. Селен Сера. . Серебро Скандий Стронций Сурьма Таллий. Тантал. Теллур. Титан. Торий. Углерод Уран. . Фосфор Фтор. . Хлор. . Хром. . Цезий. Церий. Цинк. . Цирконий [c.286]

    Примером атомной решетки является кристалл алмаза в узлах его решетки помещаются атомы углерода кристаллы многих солей (например, галогенидов натрия, калия, рубидия, цезия) представляют собой ионные решетки молекулярные решетки образуют неметаллы, например сера, селен, иод, фосфор, а также многочисленные органические соединения. [c.273]

    К этой группе веществ можно отнести фосфор белый (желтый), фосфористый водород, водородистый кремний, цинковую пыль, алюминиевую пудру, карбиды щелочных металлов, сернистые металлы, металлы — рубидий и цезий, арсины, стибины, фосфи-ны и др. [c.118]

    Гидриды рубидия и цезия являются чрезвычайно химически активными веществами. Они воспламеняются на воздухе, содержащем следы влаги, самовоспламеняются в атмосфере хлора и фтора, взаимодействуют с бромом (КаН с бромом на холоду не реагирует). В отличие от гидридов натрия и калия гидриды рубидия и цезия взаимодействуют с сероуглеродом. При нагревании с азотом или аммиаком гидриды образуют амиды, а с фосфором — фосфиды рубидия и цезия. Важная в практическом отношении реакция гидридов с водой протекает очень бурно с выделением водорода  [c.82]

    Отдельные тома серии Аналитическая химия элементов выходят самостоятельно но мере их подготовки. Вышли в свет монографии, посвященные торию, таллию, урану, рутению, молибдену, калию, бору, цирконию и гафнию, кобальту, бериллию, редкоземельным элементам и иттрию, никелю, технецию, прометию, астатину и францию, ниобию и танталу, протактинию, галлию, фтору, селену и теллуру, алюминию, нептунию, трансплутониевым элементам, платиновым металлам, радию, кремнию, германию, рению, марганцу, кадмию, ртути, кальцию, фосфору, литию, олову, серебру, цинку, золоту, рубидию и цезию, вольфраму, мышьяку, сере, плутонию, барию, азоту, стронцию, сурьме, хрому, брому, ванадию, актинию, хлору. [c.4]

    Открываемый минимум — 0,13 у Т1+ в 0,025 у. створа предельная концентрация 1 200 ООО. Соли цезия, рубидия и калия, образующие малорастворимые фосфоро-молибдаты, НС мешают. В растворе должны отсутствовать другие восстановители (Hg2 +, Sb , Fe2+). Чувствительность реакции может [c.54]


    Нитрат бария 135 бериллия 93 висмута 397 галлия 180 индия 187 иттрия 614 калия 52 кальция 114 лантана 621 лития 14 магния 103 меди 556 натрия 31 никеля 864 палладия 884 ртути 596—7 рубидия 71 свинца 264 серебра 566 скандия 607 стронция 125 таллия 196—7 тория 671 уранила 685 цезия 83 церия 629—30 Нитрид бора 153 иода 535 лития 20 магния 106 серы 456 фосфора 356 хлора 506 Нитрит 303—5 Нитрит, гипо- 301 Нобелий 700 [c.477]

    Если говорить о неметаллических элементах, то можно сравнить химическую активность белого фосфора и молекулярного азота по отношению к кислород) белый фосфор при незначительном подогреве загорается иа воздухе, азот достаточно активным по отношению к кислороду становится только при высоких температурах. А ведь если руководствоваться тем, что активность (на самом деле речь идет об электроотрицательности) неметаллов растет в главных подгруппах снизу вверх, то азот надо считать более активным неметаллом, чем фосфор. Из щелочных металлов литий (наименее электроположительный из них) выступает в роли партнера, по отношению к которому азот оказывается наиболее химически активным, реагируя с ним даже при комнатной температуре, в то же время не реагируя, например, с цезием. [c.160]

    Даже при обычной температуре реакции цезия с фтором, хлором и другими галогенами сопровождаются воспламенением, а с серой и фосфором — взрывом. При нагревании цезий соединяется с водородом, азотом и другими элементами, а при 300° С разрушает стекло и фарфор. Гидриды и дейтериды це.чия легко воспламеняются на воздухе, а также в атмосфере фтора и хлора. Неустойчивы, а иногда огнеопасны и взрывчаты соединения цезия с азотом, бором, кремнием и германием, а также с окисью углерода. Галоидные соединения цезия и цезиевые соли большинства кислот, напротив, очень прочны и устойчивы. Активность исходного цезия проявляется у них разве только в хорошей растворимости подавляющего большинства солей. Кроме того, они легко превращаются в более сложные комплексные соединения. [c.96]

    Следует заметить также, что степень опасности радионуклидов зависит не только от характеристики радиоактивного излучения, но и от их способности накапливаться в живых организмах. Быстрее всего из организма выводятся висмут, родий, бром, серебро, кобальт, №1трий, углерод (пфиод полувыведения от 1 до 10 суток). Для теллура, цезия, бария, меди, рубидия, серы, хлора, калия, скандия, магния и сурьмы эта величина составляет от 10 до 100 суток, а для железа, хрома, цинка, мьппьяка, урана, тория, редкоземельных элементов, бериллия, фтора, фосфора - ог 100 до 1000 суток. Период полувьшедения свинца, радия, нептуния, плутония, америция и кальция превьппает 1000 суток [184]. [c.101]

    По мере накопления экспериментального материала выяснилось, что высокие давления вызывают зачастую уникальные изменения в веществах, которые никаким другими способами достигнуты быть не могут. Это может проявляться в переходе электрона с одной орбитали на другую (церий, цезий), переходе вещества из диэлектрика в состояние с металлической проводимостью (фосфор, оксиды железа, никеля, хрома), переходе вещества из. модификации с малой плотностью в модификацию с большой, в изменении валентности, получении совершенно новых соединений и т. д. Все эти явления крайне интересны, и далеко не всем им в настоящее время дано убедительное объяснение. Давление существенно влияет и на кинетику различных процессов. Многочисленные примеры показывают, как действует давленпе на с.чорость реакций различных порядков и какие выводы можно сделать па основании исследования таких процессов. Действие давления на сложные химические реакции редко удается объяснить до конца, ибо очень трудно выделить в суммарном эффекте, где давление проявило себя как действующее на равновесие процесса, а где — на его кинетику. Особо следует указать на давление, влияющее на скорость пространственно-затруд-ненных реакций. [c.6]

    Азот N, алюминий А1, барий Ва, бериллий Ве, бор В, ером Вг, водород И, галлий Оа, германий Ое, железо Ре, ЛОТО Аи, иод I, кадмий СЛ, калий К, кальций Са, кислород кремний 81, литий и, магний М , марганец Мп, медь Си, ч ышьяк Л.s. натрий N3, олово 8п, ртуть Hg, рубидий КЬ, < пинец РЬ, селен 5е, сера 8, серебро Ag, стронций 8г, теллур Те, угле1Х)Д С, фосфор Р, фтор Р, хлор С1, хром Сг, цезий Сз, [c.8]

    Периодическая система элементов позволяет ориентировочно определить природу химической связи в соединениях, образованных двумя элементами, для чего необходимо знать закономерности изменения свойств в периодах и группах с ростом порядкового номера. Если в качестве примера остановиться на взаимодействии цезия и фосфора с хлором, то можно сразу сказать, что оно приведет к образованию соединений s l и P I3. В первом из них связь ионная, так как цезий находится в начале шестого периода, а хлор — в конце третьего периода и их свойства поэтому резко противоположны. При взаимодействии этих элементов общая электронная пара переходит в полное владение хлора, возникают два иона противоположного знака, которые электростатически притягиваются друг к Другу. Фосфор же с хлором находятся в одном периоде, но хлор расположен правее фосфора и поэтому у него сильнее выражено стремление присоединять электроны. В соединении P I3 общие электронные нары смещены к атомам хлора, химическая связь ковалентная полярная. К таким же выводам можно прийти, учитывая значения относительных электроотрицательностей реагирующих атомов (см, табл. 7). В конечном итоге современная теория химической связи (см. гл. П1) связана периодическим законом. [c.56]


    Реакция с галогенами сопровождается взрывом. Со взрывом идет зеакция с серой, двуокисью углерода и четыреххлористым углеродом 10]. При нагревании взаимодействуют с углеродом (графитом), красным фосфором и кремнием [10]. Выше 300° разрушают стекло, восстанавливая кремний из SIO2 и силикатов [6]. Оказывают сильное корродирующее действие на многие металлы и материалы. Гидриды их МеН образуются при нагревании расплавов в атмосфере водорода. RbH и sH менее устойчивы, чем LiH, и во влажном воздухе окисляются, воспламеняясь [10]. С азотом рубидий и цезий непосредственно не реагируют их нитриды МезЫ, получаемые взаимодействием паров металлов с азотом в поле тихого электрического разряда [6], менее устойчивы, чем LI3N. [c.84]

    Соединения с азотом. Нитриды МвзЫ — серовато-зеленые или синие, весьма-гигроскопичные и малоустойчивые соединения, на воздухе воспламеняются. Легко взаимодействуют с хлором, серой и фосфором. При нагревании взрываются, выделяя азот [10]. Водой разлагаются — образуется МеОН и аммиак [10]. Могут быть получены в жидком азоте при электрическом разряде между электродами, изготовленными из рубидия или цезия. [c.104]

    Гидриды рубидия и цезия чрезвычайно химически активные соединения. Они разлагают воду (бурно) и этанол, выделяя водород и образуя соответственно гидроокиси и алкоголяты. Уже под действием паров воды воздуха МеН окисляются, воспламеняясь. Самовоспламенение наблюдается в атмосфере фтора и хлора при этом образуются MeF и МеС1. При нагревании с азотом и аммиаком образуют амиды, с фосфором — фосфиды, с ацетяленом — ацетилиды. Обладая не только сильными восстановительными, но и каталитическими свойствами, они находят применение в реакциях конденсации и полимеризации [10]. [c.106]

    Метод пламенной фотометрии широко применяется в аналитической практике для определения кальция при клинических анализах крови [22,166,171,213, 561, 784, 1649] и других биологических объектов [482, 561, 1520], при анализе почв [226, 428, 467, 969], растительных материалов [7, 225, 466, 993, 1522], сельскохозяйственных продуктов [52, 306], природных вод [15851, морской воды [594, 791]. Метод находит применение при определении кальция в силикатах [67], глинах [6, 59], полевом шпате [637], баритах [67], рудах [164, 1136, 13981, а также в железе, сталях, чугунах [326, 1149], ферритах [949], хромитовой шихте [70], основных шлаках [1045], мартеновских шлаках [988], доменных шлаках [1510], силикокальции [1012], керамике [395]. Описаны методы пламенной фотометрии для определения кальция в чистых и высокочистых металлах уране [201, 12011, алюминии [1279], селене [1454], фосфоре, мышьяке II сурьме [1277], никеле [1662], свинце [690], хроме [782] и некоторых химических соединениях кислотах (фтористоводородной, соляной, азотной [873]), едком натре [235], соде [729], щелочных галогенидах [499, 885], арсенатах рубидия и цезия [316], пятиокиси ванадия [364], соединениях сурьмы [365, 403], соединениях циркония и гафния [462, 1278], солях цинка [590], солях кобальта и никеля [1563], карбонате магния [591], ниобатах, тантала-тах, цирконатах, гафнатах и титанатах лития, рубидия и цезия [626], стронциево-кальциевом титанате [143], паравольфрамате аммония [787]. [c.146]

    Периодическая система элементов позволяет ориентировочно определить и природу химической связи в соединениях, образованных двумя элементами, для чего необходимо знать закономерности изменения свойств в периодах и группах с ростом порядкового номера. Если в качестве примеров остановиться на взаимодействии цезия и фосфора с хлором, то можно сразу сказать, что оно приведет к образованию соединений s l и РС . В первом из них связь будет ионная, так как цезий находится в начале VI периода, а хлор — в конце III и их свойства поэтому резко противоположны. [c.191]

    Многие элевленты и соединения кристаллизуются в двух формах и поэтому называются диморфными. Так, белый фосфор относится к кубической системе, а черный — к гексагональной при кристаллизации железо образует как гранецентрированную решетку, так и объемноцентрированную серое олово имеет кубическую решетку, а белое — тетрагональную. Вообще говоря, две модификации обладают различными свободными энергиями, а следовательно, и различными давлениями пара при всех температурах, исключая точку перехода (Т,щ,), в которой кривые свойство — температура пересекаются. Переходы одной кристаллической формы в другую следует рассматривать как теоретически возможные при всех температурах вероятность таких переходов может изменяться в широких пределах. При низких температурах галогениды аммония кристаллизуются в объемноцентрированные кубы, а при более высоких тедшературах образуется простая кубическая решетка типа каменной соли размеры соответствующих ячеек показаны в табл. 10. Расстояние а между катионом II ближайшим к нему анионом равно, как мы видели, / /3/2 для решетки типа хлористого цезия и 1/2 для типа хлористого натрия. Значения а дпя двух модификаций упомянутых галогенидов приведены в третьем и седь- [c.484]

    Как уже указывалось, многие гетерополисоединения вольфрама и молибдена нашли практическое применение. В частности, они широко ипользуются в аналитической химии для определения ряда элементов. Так, фосфоромолибдат аммония-магния используется для определения магния, молибдена, фосфора. Для определения кремния, фосфора, германия, мышьяка и церия также применяют соответствующие гетеро-полимолибдаты. Рубидий и цезий определяются в виде кремнемолибда-тов и кремневольфраматов. [c.244]

    Сульфид бария 138 бора 152 висмута 405 галлия 183 германия 244—5 железа 836 индия 190 иттрия 617 кадмия 593 калия 60 кальция 118 кобальта 854 кремния 234 лантана 624 лития 19 марганца 800 меди 561—2 молибдена 778 мышьяка 369—71 натрия 39 никеля 868 олова 254—5 ртути 602 рубидия 74 свинца 269 серебра 571 скандия 610 стронция 128 сурьмы 384—5 таллия 201 углерода 208 фосфора 354—5 хрома 768 цезия 86 цинка 586 Сульфид, гидроаммония 286 бария 139 натрия 40 Сульфид, ди- 837 Сульфид, поли-аммония 287 калия 61 натрия 41 цезия 87 Сульфит 416, 418, 420 Сульфит, гидро- 417, 419, 421 [c.478]

    Ниже рассматриваются соединения рубидия и цезия с неметаллами V и VI групп периодической системы — азотом, фосфором, мышьяком, углеродом, кремнием и германием. Германий выступает в данном случае как кислотообразующий элемент вслед-ствие того, что германиды рубидия и цезия проявляют явно солеобразный характер. Бориды рубидия и цезия неизвестны и вопрос о возможности их существования до настоящего времени не вполне выяснен. [c.107]

    Нитриды рубидия и цезия МезЫ — малоустойчивые серовато-зеленые или синие очень гигроскопичные порошки, образующиеся в жидком азоте при электрическом разряде между электродами, изготовленными из рубидия или цезия [199]. Нагревание гидрида рубидия или цезия в токе азота приводит к получению нитрида с примесью амида. Нитриды рубидия и цезия воспламеняются на воздухе, легко взаимодействуют с хлором, фосфором и серой, при нагревании взрываются с выделением азота водой количественно разлагаются по реакции [200]  [c.107]

    Для получения полупентафосфидов рубидий или цезий нагревают с красным фосфором или его парами при 400—430° С в реакторе, из которого предварительно удален воздух. Затем черный продукт реакции подвергают вакуумной дистилляции для удаления непрореагировавшего металла и фосфора [213]. Можно синтезировать полупентафосфиды рубидия и цезия путем взаимодействия расплавленного фосфора с гидридами этих металлов. [c.110]

    Для получения КЬНгР04 и SH2PO4 можно использовать также способ высокотемпературной обработки хлоридов рубидия и цезия ортофосфорной кислотой или пятиокисью фосфора. При этом происходит отщепление хлористого водорода и воды и образуются метафосфаты (RbPOa) и (СзРОз) , растворимые, в отличие от (МаРОз)п и (КРОз) , в воде. Из водного раствора метафосфатов кристаллизуются уже дигидроортофосфаты  [c.128]

    Поскольку иониты подвергаются радиолизу, более рациональным является применение электролитического выделения цезия и рубидия из аммиачного раствора (3,5. г/лл гетерополнсоединения) фосфоровольфраматов [320]. Электролиз проводят в ячейках с пористой керамической диафрагмой и электродами, изготовленными из нержавеющей стали, при напряжении 4—6 в и силе тока 1 а. В процессе электролиза ноны цезия, рубидия и аммония переходят лз анолита (аммиачный раствор) в католит, который затем упаривают для удаления аммиака, нейтрализуют 1 н. серной кислотой и упаривают досуха. Электролиз позволяет обеспечить 90%-ный переход цезия и рубидия в католит при отсутствии в последнем фосфора и вольфрама. [c.325]

    Особенно широко в последние годы исследуют сорбенты, содержащие соли легкогидролизующихся элементов с многоосновными кислотами фосфорнокислые соли 2г, Т1, 8п, и (VI), 8Ь(У), соли полифосфорных кислот. Из сорбентов подобного типа наиболее исследован фосфат циркония, сорбция на котором происходит в результате обмена водорода группы Р—ОН. Ценно свойство сорбента поглощать цезий из кислых растворов. Избирательность поглощения цезия позволяет сорбировать его из растворов, содержащих значительные количества Ма, А1, Ре. Десорбция осуществляется при 50—90° С растворами МН4МОз, NH4 1 или ННОз- Другие щелочные металлы десорбируются значительно легче цезия, что используют для их разделения. Селективность фосфатциркониевого сорбента по отношению к цезию увеличивается при введении в его состав 20% фосфоро-вольфрамата или фосфоромолибдата аммония. [c.181]

    Как сообщает научно-техническая печать, на Павлодарском июминиевом заводе кроме глинозема из бокситов извлекают Ga V, на других заводах — тот или другой из этих элементов. Кроме )го, в бокситах содержатся в разных количествах титан, железо, осфор, молибден, цирконий, цезий и некоторые другие элементы, [аиболее целесообразными источниками для получения галлия, анадия и фосфора являются маточные оборотные растворы тех-ологической линии, работающей по способу Байера, в которых [c.189]


Смотреть страницы где упоминается термин Цезий с фосфором: [c.125]    [c.309]    [c.17]    [c.477]    [c.73]    [c.109]    [c.146]    [c.189]    [c.318]    [c.17]    [c.181]    [c.309]   
Химия и технология соединений лития, рубидия и цезия (1970) -- [ c.109 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2024 chem21.info Реклама на сайте