Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод рост кристаллов

    Суммарная скорость кристаллизации зависит от соотношения скоростей обеих стадий кристаллизации и в общем случае определяется скоростью диффузии молекул к центрам кристаллизации, молекулярной и пространственной структурой сырья,температурой и длительностью процесса и др. Возможны три варианта соотношения скоростей а) скорость диффузии молекул к центрам кристаллизации больше скорости роста размеров кристаллов б) скорость роста размера кристаллов примерно равна скорости диффузии молекул к центрам кристаллизации в) скорость диффузии молекул к центрам кристаллизации лимитируется вязкостью системы и меньше скорости роста кристаллов углерода. При достижении укрупненными центрами кристаллизации (сложными структурными единицами) порога осаждения система расслаивается на фазы (третья стадия). [c.158]


    Вязкость нефтяных остатков при высоких температурах изменяется по сложной зависимости по мере увеличения концентрации дисперсной фазы она непрерывно возрастает. Только при замедлении скорости перехода системы из аномального жидкого состояния в твердое до оптимального ее значения, когда вязкость обеспечит диффузию молекул к центрам кристаллизации, возможен рост крупных кристаллов. При одних и тех же условиях (получения нефтяного углерода соответствие между указанными скоростями и ростом кристаллов создается подбором сырья определенной молекулярной структуры (крекинг-остатки дистиллятного происхождения, ароматические концентраты). В температурном интервале перехода системы из состояния с критическим напряжением сдвига предельно разрушенной структуры Рг к состоянию с критическим напряжением сдвига необратимо твердеющей системы Рд возможен, интенсивный рост кристаллов углерода с анизотропными свойствами. Величина температурного интервала зависит от температуры процесса перехода. При высоких температурах этот интервал минимален, что существенно ограничивает рост кристаллов. Он минимален также при использовании сырья, со- [c.47]

    Гораздо более сложная, а часто и более важная задача переноса возникает тогда, когда конвективная текучая среда поглощает и излучает энергию, как это имеет место для аммиака, двуокиси углерода и воды. Такого рода связанные между собой процессы переноса, происходящие одновременно за счет излучения и естественной конвекции, возникают в печах, естественных водоемах, в пламенах и при пожарах, в коллекторах и накопителях солнечной энергии, в процессах роста кристаллов и задачах экологии. Эти процессы очень важны, и в указанной области были достигнуты весьма впечатляющие результаты (см., например, обзорные работы [5, 12, 15, 92, 93]). В ряде работ по исследованию пламен и процессов горения неизменно фигурируют также вопросы взаимодействия теплового излучения газов с естественной конвекцией (см., например, работы [1, 51 —53, 64]). Некоторые из этих работ упоминались в разд. 6.8. [c.485]

    Существуют специальные вопросы, как обращаться с замороженным биологическим материалом, в частности, при переносе образцов из одного прибора в другой. В работе [450] было показано, что наиболее важно проводить лиофильную сушку срезов строго контролируемым образом. В этой работе срезы собирались на сеточках для электронного микроскопа и медленно высушивались при низкой температуре в течение нескольких часов. В работе [449] замороженные срезы помещались между двумя сеточками, покрытыми углеродом, а затем медленно высушивались в потоке сухого азота. Если процесс лиофильной сушки происходит слишком быстро, то начнется рост кристаллов льда с последующим перераспределением растворимых эле- [c.315]


    Возможность такого процесса может быть обоснована двояко во-первых, исходя из молекулярного механизма роста кристаллов во-вторых, исходя из общей теории образования новой фазы (нуклеации). Если имеется грань кристалла, вблизи которой концентрация атомов углерода превышает соответствующую равновесную, то избыток атомов углерода будет выделяться на грани. При этом они будут находиться под влиянием силового поля кристаллической подложки (затравки), стремящейся продолжить ту кирпичную кладку , которая привела в свое время к образованию самой кристаллической подложки. [c.19]

    Приведенные составы были выбраны из следующих соображений во-первых, медь, индий и сурьма, практически не растворяя углерода, образуют непрерывный ряд твердых растворов с основными компонентами и должны в этом случае существенно снижать растворимость углерода во-вторых, предшествующими экспериментами установлено, что при введении указанных добавок уменьшается число центров кристаллизации и понижается скорость роста кристаллов алмаза. Последнее обстоятельство играет важную роль При выращивании алмаза на затравочном кристалле. [c.360]

    Рост кристалла в точке х с температурой Тх возможен при условии превышения концентрации раствора углерода равновесной по отношению к алмазу Ст(Гх)>Са° (Т ). По мере растворения графита на холодном контакте и повышения концентрации углерода в расплаве зона, где С г(Т х) >С а°(7 х), расширяется в сторону высоких температур и более низких пересыщений. [c.367]

    Влияние р-Т -условий на величину линейной скорости роста алмаза в установившемся режиме подобно их влиянию на числс центров кристаллизации и находится в полном соответствии с изменяющимся пересыщением углерода в металлическом расплаве Обращает на себя внимание самостоятельное влияние величины термоградиентов в реакционной зоне на скорость роста кристаллов, которая заметно возрастает с увеличением неоднородности теплового поля при прочих равных условиях. Так, увеличение реакционного объема камеры прямого нагрева с 0,7-10 дс [c.374]

    Экспериментально установлен одинаковый характер влияния элементов первой и третьей групп на процесс образования центров кристаллизации, который заключается в ослаблении зависимости числа центров кристаллизации от давления, а на кинетику изменения формы алмазов — в относительно более частом появлении грани куба при увеличении размера кристаллов от до 0,6- 10 м, т. е. в интервале длительности процесса алмаза до 1200 с. Влияние указанных групп элементов на линейную скорость роста кристаллов противоположно (см рис. 132). Если в присутствии бора, азота и в меньшей степени алюминия скорость роста алмаза увеличивается, то введение 1п, Оа Си, 5Ь приводит к ее снижению. Полученные результаты можно объяснить некоторым повышением в присутствии этих элементов энергетического барьера перехода графит — алмаз за счет ослабления каталитических свойств металлической системы. В случае азота возможно влияние также элементов, образующих нитриды. В условиях регулярного роста кристаллов примеси первой группы способствуют увеличению пересыщения углерода или путем усиления температурной зависимости его растворимости в металлическом расплаве, или за счет увеличения размеров ассоциаций атомов углерода в растворе. Элементы третьей группы из-за слабого их взаимодействия с углеродом, очевидно, снижают и его растворимость и скорость диффузии в расплаве. [c.380]

    Изменение направления температурного перепада на обратное (температура зоны растворения меньше, чем зоны роста) достигалось размещением одного слоя металлической шихты в центральной части реакционного объема. Как и следовало ожидать, в условиях пониженного пересыщения (см. рис. 134) скорость нароста на затравки заметно снижается. Так, при величине обратного температурного перепада (в слое металла толщиной 4 10 3 м, размере затравки около 10 м и максимальной температуре в центре реакционного объема 1470 К), не превышающего 30 К, скорость роста кристалла (см. рис. 135) имела величину 3-10 м/с. Кроме того, при этом наблюдается увеличение длительности предварительного растворения затравки, что обусловлено, вероятно, снижением интенсивности потока углерода к ним за счет противоположно направленной (по отношению к концентрационной) термодиффузии, лимитирующей в данном случае процесс переноса углерода. Образование монокристального графита в объеме металлического слоя происходило в основном по его периферии в области повышенных градиентов температуры. Качество наросшего на затравках слоя вполне сопоставимо с качеством исходных затравочных кристаллов, но ухудшается с увеличением его толщины и длительности цикла, что связано со многими факторами и, в частности, с появлением в реакционной зоне монокристаллического графита. Существенным недостатком рассмотренных вариантов загрузки реакционного объема является низкая воспроизводимость опытов по наращиванию алмаза на затравку. Это обусловлено прежде всего сложным характером теплового поля, в частности, наличием как осевого, так и радиального градиента температуры, а также сравни-384 [c.384]


    Влияние р-Г-условий на величину линейной скорости роста алмаза в установившемся режиме подобно их влиянию на число центров кристаллизации и находится, в полном соответствии с из- меняющимся пересыщением углерода в металлическом расплаве. Обращает на себя внимание самостоятельное влияние величины термоградиентов в реакционной зоне на скорость роста кристаллов, которая заметно возрастает с увеличением неоднородности теплового поля при прочих равных условиях. Так, увеличение реакционного объема камеры прямого нагрева с 0,7>10 до 3,5 10- сопровождающееся (см. главу 15) существенным уменьшением радиальных и осевых термоградиентов, обеспечивает возможность снижения скорости роста алмаза, особенно на начальных этапах процесса синтеза (см. рис. 132), а также увеличения эффективной длительности процесса синтеза до 2400— 3000 с (см. рис. 131). При этом интервалы параметров, обеспечивающие спонтанное образование и регулярный рост ограниченного числа полногранных монокристаллов в изучавшихся усло-374 [c.374]

    Как было показано в гл. 16, растворение и рост алмаза в растворе-расплаве металлов в изучавшихся условиях лимитируются процессом переноса углерода, который может осуществляться путем термо- или концентрационной диффузии. С целью изменения механизма, лимитирующего скорость роста кристаллов алмаза, в качестве источника углерода использовались графит, содержащий цирконий (массовая доля 25 %), а также прессованная смесь порошков синтетического алмаза и никеля (в соотношении 3 2) с размером частиц (1—4)-10 м. В последнем случае графитовый нагреватель камеры с горизонтально расположенным реакционным объемом изолировался танталовой трубкой с толщиной стенки 3-10 м. Предполагалось, что указанные композиционные углесодержащие материалы за счет меньшей площади контакта с углеродом, присутствия тугоплавкого металла-наполнителя и т. д. обеспечат снижение интенсив-388 [c.388]

    При одном и том же содержании углеродных атомов в молекуле наиболее высокой температурой плавления обладают нормальные алканы, где дисперсионному взаимодействию подвергаются все углеродные атомы соседних молекул. С разветвлением структуры молекул такая возможность вследствие их иной ориентации понижается, что объясняет более низкую температуру кристаллизации. В твердом состоянии молекула алкана расположена упорядоченно, образуя кристаллы различной структуры, преимущественно большие агрегаты достаточно гибких кристаллов. Процесс кристаллизации складывается из двух стадий стадия образования центров кристаллизации (или зародышей) и стадия роста этих центров. Вторая стадия кристаллизации — многоступенчатый процесс, который по различным причинам (например, вследствие возникновения механических напряжений) может останавливаться на любой промежуточной стадии. Монокристаллы образуются только в особых условиях. Обе стадии кристаллизации сильно зависят от температуры. Понижение температуры благоприятствует образованию зародышей кристаллизации, но в то же время уменьшает молекулярную подвижность, а вместе с ней и скорость роста кристаллов. Поэтому температурная зависимость скорости кристаллизации проходит через максимум. Большинство алканов имеет несколько аллотропических модификаций, кристаллизуясь в гексагональной триклинной, моноклинной и орторомбической формах. Некоторые изоалканы, преимущественно с симметричным и компактным расположением боковых цепей в молекуле, при охлаждении застывают в стекловидную массу. Все нормальные алканы с нечетным числом атомов углерода (нечетные), начиная с С9, и с четным (четные), начиная с С36, относящиеся к полиморфным соединениям, могут кристаллизоваться во всех четырех формах. [c.112]

    Хотя частичное заполнение электронных зон должно соответствовать металлическому характеру проводимости этих типов углеродных материалов, для них наблюдается положительный температурный коэффициент электропроводности. Это объясняется дырочным характером проводимости (или рассеиванием) на границе между сетками. По мере увеличения концентрации дырок нижняя зона постепенно истощается. При температурах выше 1400° С (рис. 8, в) процесс образования дырок вследствие выделения водорода, по-видимому, в основном завершается. Связывание разорванных сеток, происходящее во время роста кристаллов, приводит к уменьшению количества дырочных дефектов, играющих роль электронных ловушек. я-Зона начинает снова заполняться. Одновременно при росте размеров сеток углерода происходит уменьшение ширины АО запрещенной зоны. При температуре 2000° С (рис, 8, г) эту зону можно считать достаточно узкой для перехода электронов в зону проводимости под действием теплового возбуждения. Тя- [c.31]

    Процесс графитирования заключается в том, что в углеродистых материалах при высокой температуре (от 1400 до 3200° С) происходит изменение относительной ориентировки атомов углерода, что приводит к росту кристаллов и образованию графитовой структуры. Гра-фитирование сопровождается увеличением плотности и электропроводности материала, а также понижением содержания золы, повышением стойкости против воздействия различных химических агентов, в частности, против окисления на воздухе, а также изменением ряда других свойств. [c.123]

    Для определения возможности удовлетворительной очистки сточной воды в каждом конкретном случае должны быть тщательно оценены кинетические факторы, влияющие на образование карбоната кальция. Кинетические факторы, связанные с превращением кристаллических фаз (например, превращение первоначально образовавшейся термодинамически менее устойчивой фазы в термодинамически более устойчивую фазу) или изменением концентрации диоксида углерода в растворе здесь не обсуждаются, их детальное описание дано в новых работах [20, 21]. Для роста кристалла в гетерогенных реакциях, протекающих в водных средах, очень важна действительная площадь поверхности, это относится и к росту карбоната кальция в пересыщенном растворе [17]. Данный кинетический фактор исследован недавно. [c.29]

    Легко видеть, что и кремний и кислород проявляют здесь свою обычную валентность 51 — 4, а О — 2. Первое впечатление, что на каждый атом 81 приходятся четыре атома кислорода, а не два, легко разрушить, сообразив, что каждый из четырех атомов кислорода, окружающих каждый атом кремния, одновременно принадлежит и второму, соприкасающемуся с ним атому кремния, так что на долю каждого атома кремния приходится 4 2 = 2 атома кислорода соответственно эмпирической формуле кремнезема ЗЮз. Таким образом, Д. И. Менделеев оказался прав Б то время как решетка твердой двуокиси углерода молекулярная, слагается из отдельных слабо связанных молекул, решетка кремнезема— координационная, молекул в ней вообще нет. Каждый кристаллик кварца, тридимита или кристобаллита — это, подобно кристаллу алмаза, как бы одна цельная, выросшая молекула. Рост кристалла кварца — процесс по своей природе не физический, а химический, так как он связан с образованием новых, ранее не существовавших химических связей и полностью отвечает, например, полимеризации изопрена в каучук. [c.418]

    Процесс синтеза искусственных алмазов представляют в основном в виде двух стадий зародышеобразования и роста кристалла алмазаВ действительности непосредственно алмазообразованию предшествует твердофазное взаимодействие с катализатором и его науглероживание ниже плавления эвтектики металл -углерод плавление науглероженного катализатора и взаимодействие с расплавом в условиях изменяющейся концентрации углерода, параллельно с процессом алмазообразования протекает процесс жидкофазной графитации. [c.112]

    Поскольку взаимная диффз зия растворов идет медленно, осаждеппе гидроокиси кальция заканчивается только через 20— 30 дней. Однако это обеспечивает условия для роста кристаллов. Вьшавшие кристаллы Са(0П)2 быстро отсасывают па воронке с пористой стеклянной пластинкой, промывают водой, пе содержащей двуокиси углерода, затем спиртом, эфиром и быстро высушивают при 110° С. [c.155]

    Разные виды фосфатного сырья разлагаются кислотами с различной скоростью. Количественная характеристика химической активности определена для некоторых видов фосфатов при разложении их кислотамиа также при термическом их восстановлении Однако систематических данных о реакционной способности разных фосфатов не имеется. Реакционная способность природных фосфатов при кислотном их разложении обычно уменьшается после нагревания их вследствие спекания зерен и роста кристаллов 04 Разложение кислотами облегчается, если природный фосфат содержит некоторое количество двуокиси углерода. [c.27]

    Условия, при которых этого можно избежать, выводятся из общей теории зарождения и роста кристаллов Гиббса—Фольмера—Каишева. По этой теории следует, что вероятность появления устойчивого, так называемого критического, зародыша новой модификации (в нашем случае графита), способного к уже беспрепятственному дальнейшему росту, тем меньше, чем больше работа его образования. Эта работа пропорциональна поверхностной энергии трехмерного зародыша критических размеров, которые тем больше, чем меньше пересыщение атомов углерода по отношению к их равновесию с графитом. Поэтому выгодно брать малое пересыщение, превышающее, однако, минимально необходимое, для того чтобы мог происходить рост алмаза. [c.19]

    Эта скорость также рассматривается в теории роста кристаллов Фольмера—Каишева—Странского. При этом, несмотря на присутствие уже образовавшегося кристалла (затравки), на определенных стадиях роста граней в начале наращивания нового слоя кирпичной кладки скорость роста может лимитироваться необходимостью затраты работы образования двухмерного (плоского), толщиной в один атом, критического зародыша. При очень малом пересыщении атомами углерода вероятность образования таких зародышей так мала, что рост кристалла идет с запинками , подобно остановкам плохо смазанных поверхностей при скольжении. Однако на определенных участках поверхности кристалла рост может идти непрерывно, без запинок , ввиду того, что либо работа образования зародыша нового слоя кирпичной кладки равна нулю [например, в случае алмаза на гранях с индексами (100)], либо (как в случае винтовой дислокации на поверхности кристалла) никаких двухмер- [c.21]

    Интересно отметить, что расчеты равновесия без учета упругих полей дают достаточно хорошие совпадения р-Г-параметров синтеза при использовании расплавов некоторых металлов переходных групп (на необходимость их применения указывалось еще в работе [16]). Хотя в данном случае речь должна идти не о фазовом превращении графита в алмаз, а о перекристаллизации графита в алмаз. Такое совпадение неудивительно, ведь в расплавах металлов, называемых обычно катализаторами-растворителями, ДСдеф мало. В этом случае при росте кристаллов путем встраивания атомов (молекул) в изломы (за счет атомарной и кинетической шероховатости) химический потенциал частицы в кристалле равен ее химическому потенциалу в растворе. Поэтому при использовании графита в качестве шихты р-Г-параметры области равновесия (индивидуальные для каждого типа расплава) должны быть близки к расчетным значениям в классическом приближении. Однако также хорошо известно, что при понижении температуры (и давления) ниже определенной величины (<1400— 1300 К) никакого совпадения в экспериментальных и расчетных данных не наблюдается, так как число зародышей резко уменьшается и рост алмаза фактически прекращается. Несомненно, в этом случае начннают сказываться такие факторы, как химические и структурные характеристики расплава. О том, насколько важную роль играет структура расплава, свидетельствуют эксперименты по введению в систему роста металлов, слабо взаимодействующих с углеродом, Sb, Sn, Ge, Си. На основании экспериментов можно сказать, что ни изменением относительных растворимостей графита и алмаза, ни изменением поверхностной межфазной энергией (A s) нельзя объяснить экспоненциальный рост порогового давления, начиная с определенных концентраций этих добавок. Ясно, что при расчете области равновесия графит — раствор углерода необходимо учитывать такие факторы, как относительные растворимости и межфазные энергии границ этих фаз, степень отклонения раствора в расплаве от идеального, степень его упорядочения, коэффициенты активности и конфигурации активационных комплексов и др. [c.309]

    В начальной стадии кристаллизации поток углерода из горячей зоны незначителен, а величина и снижение пересыщения у фронта роста кристаллов, перемеи ающегося в слой металла, аналогичны случаю одного холодного источника. С учетом действия двух источников углерода пересыщение у фронта роста становится Сг (Тх)—Са°(Тх)>СгЧТх)—Са°(Тх). При этом повышение интенсивности потока углерода из горячей зоны все в большей степени замедляет снижение пересыщения на движущемся фронте роста, пока не компенсирует полностью, что соответствует локальному минимуму пересыщения. Дальнейшее возрастание концентрации до Сг (Тх) увеличивает пересыщение на фронте роста, значение которого стремится к максимальному Сг Тх) — Са°(Тх). После установления в слое металла стационарного распределения концентрации углерода пересыщение у обращенной в расплав поверхности кристаллов опять начнет уменьшаться по мере ее перемещения к горячей зоне. Таким образом, с увеличением толщины слоя расплава и уменьшением перепада температуры между поверхностью растворения время достижения локальных минимума и максимума пересыщения возрастает. [c.367]

    В настоящее время применяют расплавы состава 50% Na l —30% K l —10% NaF. Электролиз ведут при 680— 700° С, плотность тока на катоде достигает 8 а/см , при этом выход по току 70%, напряжение на ячейке 6 в. Металл содержит некоторое количество углерода (из анодов), и при недостаточной герметизации аппаратуры может иметь место повышенное содержание кислорода и азота. Катодный осадок состоит из чрезвычайно мелких кристаллов, так как на катоде протекают реакции поляризации ионов, нарушающие рост кристаллов. [c.298]

    Степень кристаллизации в общем зависит не только от скорости зародыщеобразования, но и от возможности роста кристаллов. Однако последняя уменьшается, когда концентрация зародышей становится больше оптимальной. Если размер частиц технического углерода усиливающего типа составляет 20—25 нм, то размер частиц вулканизационной структуры 2—9 нм. Следовательно, при одинаковом объемном содержании число зародышеобразователей — частиц микрогетерогенной вулканизационной структуры — по крайней мере на два десятичных порядка больше, чем в смеси каучука с техническим углеродом. При этом концентрация зародышеобразователей оказывается настолько высокой, что не только замедляется рост кристаллов, но и уменьшается предельная степень кристаллизации. Этот случай характерен для кристаллизации вулканизатов с сульфенамидами, МБТ и ДБТД. [c.259]

    При обработке алюмоплатинового катализатора в статических условиях сначала хлором при 773 К, а затем окисью углерода при 613 К платина на первом этапе переходит в Р1С12, а на втором проявляется восстанавливающее действие СО. Наблюдается значительный рост кристаллов платины, что является следствием переноса ее в виде летучего карбонилхлорида  [c.111]

    Кристаллы алмаза выращивают из углерода, который берут в виде графита (может быть взят также сахарный уголь или сажа) и помещают в пресс высокого давления с некоторым количеством металлического катализатора (из типичного металла VIII группы). При высоких давлениях и температурах алмаз является стабильной фазой, а металлический катализатор, насыщенный углеродом, плавится, и при этом происходит превращение углерода в алмаз. Такое превращение идет через тонкую пленку жидкости толщиной около 0,1 мм, отделяющую углерод от самопроизвольно образующихся кристаллов алмаза. Наблюдавшаяся скорость роста была высокой, по крайней мере 0,1 мм мин. Движущая сила превращения — разность термодинамических потенциалов между графитом и алмазом при таких высоких давлениях и температурах. Однако рост кристаллов не может происходить при отсутствии расплавленного металлического катализатора. Более того, было найдено, что при существовании в смесях катализатора и углерода температурных градиентов рост кристаллов алмаза ускоряется из-за температурной зависимости растворимости углерода в катализаторе. Очевидно, расплавленный металл при этих условиях можно рассматривать как растворитель алмаза, и к этому раствору применимы обычные принципы роста. , [c.239]

    На рис. 1 воспроизведены две фотографии ступени роста на поверхности кристалла камфоры при температуре около 27° С [10]. В центре кристалла имеется глубокая ямка. Вероятно, наблюдаемая спираль обусловлена движением этой ямки по кругу и к краям кристалла. Спираль удается наблюдать до температуры 90° С, выще которой она исчезает. Осталось неясным, перемещается ли центр дислокации по поверхности к периферии или большая ступень разбивается на ряд меньших. Последнее указывало бы на подвижность в кристаллах, соответствующую пластичности. Точкой перехода пластических кристаллов камфоры является 105° С. Бредли и Драри [6] нашли, что скорость роста кристаллов кубической формы четырехбромистого углерода, которая устойчива выше температуры перехода, составляет лишь одну десятую скорости роста кристаллов моноклинной формы, устойчивой ниже точки перехода. Это явление обусловлено, по-видимому, тем, что ступень роста зависит от дислокаций. В случае моноклинной формы напряжения при росте кристалла ослабляются большими дислокациями, тогда как в пластической кубической форме эти напряжения снимаются пластической текучестью, приводящей к тому, что большие дислокации расщепляются на ряд малых дислокаций. Окончательный вывод заключается в том, что выше точки вращательного перехода СВг4 большие ступени, вызывающие быстрый рост кристалла, уменьшаются по высоте в десять раз. [c.481]

    Дендритная форма кристаллов (рис. 2). Рост кристалла происходит по границам зерен. Образцы были подвергнуты нагреванию в продолжение нескольких часов при 1100° С (область раство1римости углерода. Затем температура была медленно (примерно в продолжение 15 мин.) понижена до области образования карбида ( 700°С) и поддерживалась на этом уровне в продолжение нескольких часов. После этого образец подвергался охлаждению вне печи в сильном вакууме. В этих условиях на межповерхностных границах зерен образуются крупные дендриты, причем исключается образование всех других типов осадков. Количество образующегося осадка отчетливо изменяется в зависимости от степени относительной дезориентации двух соседних кристаллов. На межповерхностных границах двойников вообще не образуется никаких осадков. [c.203]

    В то же время Кремер [41] нашла, что между 442 и 627° при 0,1б< о<0,5 доля разложившегося вещества пропорциональна Ь /, и объяснила это наличием диффузионного процесса. Эта зависимость при 627° не менялась для препаратов с различной величиной зерна, а энергия активации оказалась равной 50 ккал-молъ . В работе Кремер приведено мало подробностей, касающихся эксперимента, но опубликованные графики зависимости а от показывают значительный разброс в области больших значений а. Электронно-микроскопические исследования [42] показывают, что при разложении микрокристаллического карбоната магния в атмосфере двуокиси углерода при различных давлениях образуется конгломерат из небольших хорошо сформированных кристаллов окиси магния, форма которого соответствует внешней морфологии исходного карбоната. Кристаллы, составляющие конгломерат, тем больше по размерам, чем выше давление двуокиси углерода. Это указывает, что в условиях, когда скорость разложения подавляется, рост кристаллов продукта происходит в большей мере, чем образование ядер на новых кристаллитах. [c.80]


Смотреть страницы где упоминается термин Углерод рост кристаллов: [c.119]    [c.195]    [c.117]    [c.80]    [c.108]    [c.381]    [c.381]    [c.462]   
Физика и химия твердого состояния органических соединений (1967) -- [ c.201 , c.220 , c.221 ]




ПОИСК





Смотрите так же термины и статьи:

Рост кристаллитов

Рост кристаллов



© 2024 chem21.info Реклама на сайте