Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гидраты и клатраты

    В последнее время соединения включения широко изучаются. В частности, большой теоретический и практический интерес представляют газовые клатраты. Ряд процессов нефтедобывающей, газовой и нефтехимической промышленности сопровождается образованием углеводородных гидратов, забивающих трубопроводы и аппаратуру. Для предотвращения этого необходимо знать условия образования гидратов (температуру, давление и другие параметры) при различных составах газовой фазы [c.263]


    Аргон образует молекулярные соединения включения — клатраты— с водой, фенолом, толуолом и другими веществами. Гидрат аргона примерного состава Аг 6Н гО представляет собой кристаллическое вещество, разлагающееся при атмосферном давлении при —42,8 С. Его можно получить непосредственным взаимодействием аргона с водой при 0°С и давлении порядка 1,5 10 Па. С соединениями НаЗ, 502, СОг, ПС1 аргон дает двойные гидраты, т. е. смешанные клатраты. [c.496]

    Опреснение воды с помощью гидратных процессов. Гидраты — нестехиометрические соединения (водные клатраты), в которых молекулы удерживаются метастабильной, построенной из молекул воды, кристаллической решеткой хозяина с помощью водородных связей [44]. Очевидно, что такое включение возможно лишь при соответствии размеров полости в кристаллах молекул хозяев размерам молекул гостей . Считается, что важную роль в [c.11]

    Соединения, состоящие из молекул одного ввда или типа, внутри которых включены молекулы другого вида, имеют в литературе ряд наименований клатраты, аддук-ты, соединения включения, цеолиты, молекулярные сита, комплексы, комплексы включения, гидраты углеводородов, слоистые соединения, межслойные сорбаты, избирательные адсорбенты и др. [c.28]

    Для выделения некоторых углеводородов, в частности циклопентана и циклогексана, могут использоваться и гидраты, образующиеся при 0.- 18°С с 0,4—0,7% водным раствором вспомогательного газа — сероводорода [171]. В этом случае стабильность клатратов определяется не значением критического диаметра молекул углеводорода, как это имеет место при адсорбции на цеолитах или комплексообразовании с мочевиной, а зависит от максимального размера молекул гостя. Так, алканы с температурами кипения, близкими к температуре кипения циклопентана и циклогексана, например гексан, длина, молекулы которого больше диаметра клеток в кристаллической решетке гидратов, не способен к образованию водных клатратов даже в присутствии вспомогательного газа. [c.79]

    Роль естественного хранилища газов выполняют природные клатраты. Так, в районах вечной мерзлоты обнаружено в недрах Земли огромное скопление гидратов метана. Это важный источник ценного сырья. [c.112]

    В ряду Не — Rn возрастает и устойчивость соединений включения. Так, температура, при которой упругость диссоциации клатратов Аг-бНаО, Кг-бНаО и Хе-бНаО достигает одной атмосферы, соответственно равна —43, —28 и —4°С. Наоборот, чтобы получить при 0°С гидрат ксенона, достаточно применить давление чуть больше атмосферного. Для получения гидратов криптона, аргона и неона необходимо давление соответственно в 14,5, 150 и 300 атм. Можно ожидать, что гидрат гелия удастся получить лишь под давлением порядка тысяч атмосфер. [c.613]


    Метан — бесцветный, не имеющий запаха газ, почти нерастворимый в воде, т. кип.— 161,5 "С, т. пл.— 182,5 °С. При температуре - 0 С и более низких СН4 образует гидрат со льдом, являющийся клатратом. Если газ содержит влагу, то это при низкой те.мперату-ре может быть причиной закупорки газопровода. [c.289]

    Гидраты представляют собой кристаллические соединения — включения (клатраты), которые могут существовать в стабильном состоянии, не являясь химическими соединениями. По существу гидраты — это твердые растворы, где растворителем являются молекулы воды, образующие с помощью водородных связей объемный каркас гидратов. В полостях этого каркаса находятся молекулы газов, способных образовывать гидраты (метан, этан, пропан, изобутан, азот, сероводород, диоксид углерода, аргон). Углеводороды, молекулы которых больше молекулы изобутана, не могут проникать внутрь каркаса, а поэтому не образуют гидратов. Нормальный бутан не образует гидратов, но его молекулы способны проникать через решетку гидратного каркаса вместе с молекулами газов меньших размеров, что приводит к изменению равновесного давления над гидратом. [c.115]

    Соединения включения называют также клатратными или просто клатратами, К клатратам, например, относятся так называемые гидраты га,зов, которые образуются за счет включения в междоузельные пространства кристалла льда молекул СЬ, [c.287]

    ГАЗОВЫЕ ГИДРАТЫ, клатраты, в к-рых гостями являются молекулы газов или легкокипящих жидкостей (О , Nj, Аг, Хе, Вг , С1 , SF , H S, СН , jH,, H I3 и др.), а хозяевами - молекулы воды, образующие кристаллич. каркас. По внеш. виду напоминают снег или рыхлый лед, но в отличие от них могут существовать при положит. т-рах. [c.468]

    Газовые гидраты — клатраты, в которых гостями являются газы (О , Nj, Аг, Хе, Вг , lj, H S, СН и др.), а хозяевами — молекулы воды. См. Кпатрат. [c.69]

    Соединения включения называют также клатратными или просто клатратами. К клатратам, например, относятся так называемые гидраты газов, которые образуются за счет включения в междоузель-ные пространства кристалла льда молекул С1г, СН 4, На5, Аг, Хе, 502 или др. В одной из модификаций льда на 46 молекул воды приходится 8 свободных полостей отсюда средний состав таких кристаллогидратов клатратного типа X 5,75 Н2О, или округленно X 6Н,0 (X — молекула гостя ). Строение газового гидрата этого состава показано на рис. 136, Встречаются также гидраты газов состава X 7,75Н20 (X 8Н.р) [c.262]

    Клатраты в природе часто выполняют роль естественного хранилища газов. Так, советскими учеными (А. А. Трофимук и др.) в районах вечной мерзлоты обнаружены на значительной глубине в недрах земли твердые газовые гидраты метана — важный источник ценного сырья. [c.263]

    Вода способна образовывать соединения е рядом веществ, находящихся при обычных у< ловия х в газообразном состоянии и обычно не обладающих большой химической активностью. При мером могут служить гидраты Хе-бНоО, СН4-6Н20, sHj l IBHgO. Такие соединения образуются в результате заполнения молекулами газа межмолекулярных полостей, имеющихся в структуре воды, и называются соединениями включения, или к л а -тратами. Клатраты — неустойчивые соединения и могут существовать при сравнительно низких температурах. [c.212]

    Долгое время считалось, что атомы благородных газов вообще неспособны к образованию химических связей с атомами других элементов. Были известиы лншь сравнительно нестойкие молекулярные соединения благородных газов — иапример, гидраты Аг-бНаО, Кг-61-120, Хе-бНгО, образующееся при действии сжатых благородных газов на кристаллизующуюся переохлажденную воду. Эти гидраты принадлежат к типу клатратов (см. 72) валентные связи при образовании подобных соединений не возникают. Образованию клатратов с водой благоприятствует наличие в кристаллической структуре льда многочисленных полостей (см. 70). [c.668]

    В TexHOJjofHH неорганических веществ-большое, значение имеет конверсия метана, лежащая в основе процесса промышленного получения водорода. При температуре около 0°С и более низкой СН4 образует гидрат со льдом, являющийся клатратом. Содержание СН4 в нем близко к СН4-5,75 Н2О [(СН4)8(Н20)4в]. Возможность образования данного соединения следует учитывать при эксплуатации газопроводов—если газ содержит влагу, то при низкой температуре происходит закупорка газопровода гидратом. [c.357]

    Галогены хорошо растворимы в органических растворителях. При охлаждении водных растворов СЬ и Вг2 выделяются клатраты, имеющие состав, близкий к СЬ-5,75Н20 ( гидрат хлора ) и Вг2-7,66И20. с крахмалом иод дает соединение включения яркосинего цвета его образование является аналитической реакцией на Ь- [c.474]

    Структура гидратов, являющихся твердыми соединениями, отличается от структуры кристаллических соединений, например льда. Гидраты относятся к так называемым клатратам. Этим термином объединены соединения, которые могут существовать в стабильном состоянии, что, однако, не является результатом истинного химического взаимодействия всех молекул, входящих в состав соединения. Решетка гйдрата состоит из молекул воды, промежутки между которыми заполнены молекулами другого газа. Существуют промежутки двух размеров. Они доступны для метана, этана, HaS, Oj и других молекул (до ызо-бутана включительно), имеющих такие же размеры н-бутан может проникнуть в решетку гидрата только вместе с молекулами меньших размеров. Давление искажает структуру решетки, т. е. деформирует ее. Пентан и более крупные молекулы имеют склонность к разрушению решетки и обладают [c.216]


    Водные клатраты, или газовые гидраты, известны давно. В 1811 г. Дэви открыл газовый гидргт хлора. Несколько позже были проведены первые исследования клатратных соединений углеводородных газов с водой. [c.117]

    Газообразные алканы способны образовывать с водой, особенно под давлением, молекулярные соединения, для которых температура разложения при давлении 0,1 МПа и критическая температура соответственно равны с метаном — 29 и 21,5°С, с этаном — 15,8 и 14,5 °С, с пропаном О и 8,5°С. Такого типа гидраты часто вымерзают на внутренних стенках газопроводов. Гидраты — соединения включения (клатраты) представляют собой снегоподобные вещества, общей формулы М /гНгО, где значение п изменяется от 5,75 до 17 в зависимости от состава газа и условий образования [16]. [c.193]

    Соединения включения весьма распространены. Клатратами, например, являются так называемые гидраты газов. Они представляют собой кристаллы льда, в междоузельные пространства (см. рис. 50, в) которых включены молекулы СЬ, H2S, SO2, Аг, Хе, СН4 (или других углеводородов) и пр. По внешнему виду эти клатраты напоминают снег или рыхлый лед. Наиболее распространены гидраты газов со средним составом Х-бНаО (X — молекула гостя ). Первым был получен гидрат хлора СЬ-бНгО (Г. Дэви, 1911 г.) при охлаждении насыщенного хлором водного раствора. Этот клат-рат представляет собой желтые кристаллы, которые разлагаются при 9,6° С. [c.111]

    Образование и затем разрушение гидратов газов используются для разделения газов (углеводородов, благородных газов), соединений-изомеров. На образовании стабильных гидратов углеводородов, например пропана, и последующем их разложении основано опреснение морской воды, f aгнeтa-нием в соленую воду пропана получают кристаллы клатрата. Кристаллы клатрата выделяют, промывают и разлагают при пониженном давлении. При этом получается опресненная вода высвобождающийся пропан снова используется для образования клатрата. [c.112]

    Клатраты в природе часто выполняют роль естественного хранилища газов. Так, советскими учеными (А. А. Трофимук и др.) в районах вечной мерзлоты обнаружены на значительной глубине в недрах земли (при 200 атм и до 25°С) твердые газовые гидраты метана. По ориентировочным подсчетам общий запас этого сырья составляет [c.286]

    Вода способна соединяться с рядом веществ, находящихся при обычных условиях в газообразном состоянии, образуя при этом так называемые гидраты газов. Примерами могут служить соединения Хе-бНзО, СЬ 8Н2О, СгНе 6Н2О, СзНа 17Н2О, которые выпадают в виде кристаллов при температурах от О до 24°С (обычно при повышенном давлении соответствующего газа). Подобные соединения возникают в результате заполнения молекула.ми газа ( гостя ) межмолекулярных полостей, имеющихся в структуре воды ( хозяина ) они называются соединениями включения или клатратами. [c.215]

    Компенсирующее изменение энтальпии отрицательно и зависит от возможности дисперсионных взаимодействий хозяина и гостя . Энтальпии образования клатратов гидрохинона с аргоном, криптоном, кислородом, азотом, метаном составляют 25,1 26,4 23,0 24,3 30,2 кДж/моль гостя соответственно . Молекулы гости не остаются неподвижными в своих клетках ( lathros — по-гречески клетка) исследования клатратов двухатомных молекул в гидрохиноне привели к заключению, что молекулы НС1, О2, НВг вращаются, а также совершают броуновские колебания в клетках. Несомненно, что в клатратах, содержащих молекулы гостей различных типов (например, молекулы азота и кислорода в гидрохиноне), существует слабое взаимодействие между гостями . Многочисленные клатраты образует вода (клатратные гидраты), причем и в этом случае решетка, типичная для клатратов, отличается от решетки льда. В клатратах гостями заполняются большие и малые полости. Крупные молекулы (этан, этилен, хлороформ) помещаются только в больших полостях, молекулы меньших размеров (метан, аргон) входят в малые и большие полости. Доказано вращательное движение молекул метильной группы ацетона, молекул окиси этилена, гексафторида серы и других в кла-тратных гидратах, где движутся не только молекулы — гости , но и (медленнее) молекулы хозяина , т. е. воды. [c.271]

    Клатраты. До сравнительно недавнего времени (60-е годы XX в.) химические свойства гелия, неона, аргона и других благородных газов даже не являлись предметом дискуссии. Эти элементы называли инертными газами, подчеркивая тем самым их полную неспособность к химическому взаимодействию, что объяснялось особой устойчивостью полностью завершенных П5 и пр-орбиталей. Однако уже в конце XIX в. вскоре после открытия инертных газов Вийяр, сжимая аргон под водой при О °С, получил кристаллогидрат примерного состава Аг-бНаО. Затем были получены аналогичные гидраты ксенона и криптона. Оказалось, что эти соедннения неус- [c.391]

    Согласно представлениям Ф. Крамера, образование таких соединений происходит в результате включения атомов благородных газов в крупноячеистые пустоты, образующиеся при кристаллизации воды и ряда органических соединений, т. е. кристаллогидраты благородных газов представляют собой типичные соединения включения (или клатраты). В кристаллической элементарной ячейке таких гидратов содержится 46 молекул воды и 8 атомов благородного газа. Молекулы воды располагаются в вершинах пентагондодекаэдров, а атомы благородных газов — внутри этих пространственных фигур. Таким образом, теоретическая формула таких кристаллогидратов должна быть НаО (или Р-5,75НаО). В случае криптона [c.352]

    При внедрении в молекулярную кристаллическую решетку одного вещества молекул другого образуются соединения включения, которые называются также клатрат-ными соединениями или клатратами. Примерами клат-ратов являются гидраты газов, которые образуются за счет включения в междоузлия кристаллов льда молекул газов Аг, Хе, НгЗ, С1г и др. [c.83]


Смотреть страницы где упоминается термин Гидраты и клатраты: [c.116]    [c.116]    [c.51]    [c.28]    [c.105]    [c.444]    [c.85]    [c.486]    [c.26]    [c.51]    [c.494]    [c.367]    [c.472]    [c.283]    [c.485]    [c.20]    [c.287]   
Смотреть главы в:

Неорганическая химия -> Гидраты и клатраты




ПОИСК





Смотрите так же термины и статьи:

Гидраты

Гидраты и водные клатраты

Клатраты

Клатраты гидраты газов

Клатраты, гидраты газов и другие соединения включения



© 2025 chem21.info Реклама на сайте