Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вязкое течение и вязкоупругие свойства полимера

    Вязкость характеризует деформационные свойства полимера не только в жидкотекучем, но и в высокоэластическом состоянии. Как было отмечено выше, процесс высокоэластической упругой деформации сопровождается действием сил вязкого сопротивления. С другой стороны, течение жидкого полимера, даже если оно начинается при сколь угодно малой величине напряжения, сопровождается накоплением в материале внутренних упругих напряжений, вызванных деформацией клубков под действием сил вязкого трения. В том и другом случае величина вязких напряжений в деформируемом материале, в соответствии с законом внутреннего трения Ньютона, пропорциональна скорости деформации. Соотношение между упругими и вязкими напряжениями в простейшем случае описывается в высокоэластичном состоянии уравнением деформации вязкоупругого твердого тела (тела Кельвина), а в состоянии вязкой жидкости — уравнением деформации вязкоупругой жидкости (тела Максвелла). [c.818]


    Общность механизмов разрушения и вязкоупругости полимеров. Вязкоупругие свойства полимеров сушественно влияют на их прочность, особенно выше температуры хрупкости, где в процессе деформирования наблюдается молекулярная подвижность. В местах локальных перенапряжений происходит вынужденноэластическая деформация и вязкое течение. [c.81]

    Описаны прибор и метод обработки экспериментальных данных, получаемых при исследовании нелинейных вязкоупругих свойств полимеров при циклическом нагружении с относительно большими амплитудами деформации ( 0,1 —2%). Прибор позволяет осуществлять наложение высокочастотных малоамплитудных синусоидальных деформаций на основные низкочастотные синусоидальные деформации, имеющие большие амплитуды, и тем самым определять мгновенные значения модуля упругости в зависимости от сдвига фаз в течение цикла колебаний. Результаты измерений анализируются на основе представлений о существовании разности фаз между нелинейным упругим напряжением и нелинейным вязкоупругим напряжением. Показано, что свойства материала определяются тремя основными факторами нелинейной упругостью, зависимостью коэффициента вязкого трения от скорости деформаций и обратимыми структурными превращениями, происходящими в пределах цикла. Предложена модель, учитывающая вклад этих факторов в наблюдаемые явления. [c.41]

    Вязкое течение и вязкоупругие свойства полимера [c.173]

    Вязкое течение линейных полимеров является одним из важных случаев проявления их вязкоупругих свойств. Наряду с упругой и высокоэластической составляющими деформации при определенных условиях в полимерах может развиваться также необратимая пластическая деформация (текучесть). Для линейных некристаллических полимеров она проявляется при Т>Тс, а для кристаллических —при 7 >Гпл- [c.161]

    Вязкое течение возможно не только при сдвиге, но и при других видах напряженного состояния. Из них важнейшее значение имеет одноосное растяжение. Вся методология разделения полной деформа-дии на обратимую и необратимую составляющие, оценки скорости деформации, напряжения, вязкости остается для растяжения точно такой же, как для сдвига с естественной заменой деформаций сдвига (7) относительным удлинением (е), касательного напряжения (т) нормальным (а) и сдвиговой вязкости (т)) продольной (Л). При этом для вязкоупругих полимерных расплавов в отличие от обычных вязких жидкостей не существует какой-либо простой связи между сдвиговой и продольной вязкостями, т. е. по результатам измерений вязкостных свойств расплава при сдвиговом течении нельзя предсказать, каким будет сопротивление деформированию при одноосном растяжении, осуществляемом в различных кинематических режимах. Отсюда следует необходимость изучения вязкостных свойств расплавов полистиролов при одноосном растяжении, поскольку этот метод дает независимую информацию о поведении полимера, важную как для непосредственных практических приложений, так и для выяснения общих закономерностей проявлений вязкоупругих свойств полимерных систем при различных видах напряженного состояния. [c.179]


    Понятие о критическом молекулярном весе, начиная с которого механические свойства полимера моделируются поведением сетки флуктуационных зацеплений, играет важную роль при рассмотрении не только зависимости т] о (М), но и вязкоупругих характеристик аморфных полимеров, поскольку высокоэластическое состояние, столь для них характерное, выделяется между переходом к стеклованию и областью вязкого течения, когда молекулярный вес линейной полимерной цепи составляет 2М . Вообще значение Мс служит естественной мерой длины эффективного сегмента, так что в качестве безразмерной характеристики длины макромолекул с молеку-.лярным весом М всегда удобно использовать отношение (М/Мс). [c.181]

    Полимеры отличаются от большинства материалов, таких как металлы, бумага, керамика, натуральные волокна, главным образом, своим вязкоупругим поведением. Слово вязкоупругий используется для описания такого поведения, при котором под напряжением проявляются одновременно как вязкие, так и упругие характеристики. Подобное свойство является прямым следствием строения полимерных молекул в виде длинных цепей. В то время как механическое поведение большинства материалов под нагрузкой может считаться либо упругим, либо деформационным течением, отклик полимеров на приложенное напряжение сочетает оба указанных типа. Отношение вязких и упругих компонент, называемое демпферным , может очень сильно варьироваться в весьма небольшом температурном диапазоне при этом оно сильно зависит от скорости нагружения. [c.310]

    Изложенные выше представления об упругих телах, вязких жидкостях и линейных вязкоупругих средах являются теоретическим фундаментом современных концепций реологических свойств-полимеров. Они основаны па модельном описании поведения полимеров как сплошных сред в простейших условиях деформирования. -Так, модель упругого тела описывает совокупность равновесных состояний среды, модель вязкой жидкости — поведение материала в установившемся сдвиговом течении, модель вязкоупругого тела с линейной зависимостью между напряжениями и деформациями — различные режимы деформирования при малых (стрем ящихся к пулю) напряжениях, деформациях и скоростях деформаций. Все эти случаи являются крайними из многообразия возможных процессов деформирования, но вместе с тем они являются важнейшими, так как любые сложные теории реологических свойств полимерных систем должны удовлетворять закономерностям их поведения в заказанных простейших условиях. [c.103]

    Изложенные закономерности реологического поведения полимеров показывают, что последние обнаруживают значительную вязкоупругость, т. е. проявляют эластические свойства даже в вязкотекучем состоянии, в тех условиях, когда развиваются большие необратимые деформации. Поэтому методы реологического исследования вязко-упругих жидкостей значительно разнообразнее и сложнее методов гидродинамики, развитых для ньютоновских жидкостей. В частности, измерение вязкости, достаточное для определения поведения ньютоновской жидкости при ламинарном течении, для вязкоупругих жидкостей заменяется экспериментальным определением многих значений вязкости, т. е. построением кривой течения. [c.177]

    Вязкоупругими называются жидкости, проявляющие как упругое восстановление формы, так и вязкое течение. Такие свойства проявляют жидкости, содержащие смолы, полимеры, битумы и т.д. Модель вязкоупругой жидкости можно составить, если предположить, что вязкая составляющая характеризуется законом Ньютона, а упругая - законом Гука. Тогда при установившемся [c.29]

    Необычные вязкоупругие свойства полимеров не являются неожиданными, если принять во внимание сложные. молекулярные процессы, лежащие в основе любой макроскопической механической деформации. При деформации таких твердых тел, как алмаз, поваренная соль или кристаллический цинк, атомы перемещаются из своих равновесных положений иод действием силового поля, имеющего полностью локальный характер знание межатомных потенциа.тов позволяет в этом случае вычислить упругие постоянные [8]. При других механических яв.тепиях сказывается влияние дефектов структуры, имеющих размеры, гораздо большие, чем атомные [7, 8]. В обычной жидкости вязкое течен[1е отражает изменение во времени под действием напряжения характера распределения молекул, окружаю.щих данную молекулу. В данном случае связанные с эти.м явлением силы и процессы перераспределения также носят совершенно локальный характер зная их, прннципиа.тьно. можно вычислить вязкость [9]. [c.16]

    Представленные на рис. IV.4 и IV.5 экспериментальные данные позволяют также в качественной форме указать, каков характер влияния молекулярного веса полистирола на положение границ релаксационных областей. Видно, что длина цепи никак не влияет на свойства стеклообразного, кожеподобного и каучукоподобного материалов. Это связано с тем, что вязкоупругие свойства полимера в этих областях обусловлены релаксационными процессами, происходящими в пределах кинетического (или динамического) сегмента, величина которого не зависит от длины цепи в целом. Положение радикально изменяется при переходе к области эластовязкого и вязкотекучего состояний, в которых поведение полимера определяется релаксационными процессами, захватывающими несколько сегментов и макромолекулярную цепь в целом. Здесь с повышением молекулярного веса переход к области вязкого течения, требующий вовлечения в релаксационный процесс всей полимерной цепи, смещается в изотермических условиях в сторону большей длительности нагружения (или, что то же самое, меньших частот деформирования). Это означает, что для того чтобы с повышением молекулярного веса при одной и той же нагрузке обнаружить вязкое течение образца (например, если для этого требуется достижение определенной величины необратимой деформации), необходимо резко увеличить продолжительность наблюдения за развитием деформации полимера.  [c.152]



Смотреть страницы где упоминается термин Вязкое течение и вязкоупругие свойства полимера: [c.8]    [c.417]    [c.417]    [c.184]    [c.29]   
Смотреть главы в:

Полистирол физико-химические основы получения и переработки -> Вязкое течение и вязкоупругие свойства полимера




ПОИСК





Смотрите так же термины и статьи:

Вязкоупругость



© 2025 chem21.info Реклама на сайте