Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокоэластичное состояние

    Введение растворителя в полимер влияет на его свойства, в известном отношении, подобно повышению температуры. Полимер, находившийся первоначально в стеклообразном состоянии, переходит при введении растворителя постепенно в высокоэластичное состояние (набухший полимер), а затем в вязко-текучее состояние (раствор). [c.600]


    Микроскопические особенности сополимеров, учитываемые в диаграмме связи, состоят в том, что развивающаяся во времени высокоэластичная деформация обусловлена конформацией макроцепей и их внутренней подвижностью, причем сначала происходит быстрая ориентация звеньев цепей, а затем медленное скольжение сегментов, которое сопровождается преодолением вторичных физических узлов вандерваальсовского происхождения. Кинетика перехода от одной конформации к другой отражается параметрами К- и С-элементов реологической модели высокоэластичного состояния сополимера. [c.311]

    В связи с этим температурный интервал между температурами текучести и стеклования (Утек—7 ст), В котором вещество находится в высокоэластичном состоянии, сильно зависит от степени полимеризации Р. [c.571]

    Таким образом, структурно-морфологические свойства мембраны, существенные для процесса разделения, в наиболее общей форме характеризуются долей непроницаемой дисперсной фазы и относительным свободным объемом в аморфной фазе. Предельные случаи соответствуют кристаллической структуре и высокоэластичному состоянию полимеров при температуре выше температуры стеклования. [c.72]

    Являясь незначительным при малых Р, он быстро возрастает по мере увеличения среднего молекулярного веса. На рис. 199 представлена зависимость величины этого интервала от степени полимеризации полиизобутилена. При невысокой степени полимеризации область высокоэластичного состояния становится малой и при низкой степени полимеризации вещество из стеклообразного состояния переходит непосредственно в пластичное (вязко-текучее). Точка пересечения кривой с осью абсцисс отвечает отсутствию у данных полимеров области высокоэластичности. Для полиизобутилена эto наблюдается, когда число звеньев Р в цепи полимера не превышает 20, т. е. lg.P= l,3—1,4. [c.571]

    Параметр С, характеризующий концентрацию адсорбированного газа на поверхности дисперсной фазы в условиях насыщения, имеет четкую корреляцию с температурой процесса и степенью удаления полимера от высокоэластичного состояния. Чем выше температура процесса (для одного полимера), тем меньше параметр С. Аналогичная закономерность наблюдается в ряду полимеров при уменьшении разности —1, т. е. по мере приближения стеклообразного полимера к точке фазового превращения в высокоэластичное состояние. [c.82]

    При температуре текучести, отвечающей переходу из высокоэластичного состояния в вязко-текучее , тепловое движение частиц (всегда усиливающееся с повыщением температуры) достигает величины, достаточной для разрыва относительно слабых связей между цепями. В результате при дальнейшем повышении [c.570]


    Переходя к рассмотрению особенностей внутреннего строения и свойств полимеров в указанных трех состояниях, мы начнем с высокоэластичного состояния, которое свойственно только высокомолекулярным веществам и в котором наиболее отчетливо выявляются особенности свойства, обусловленные большой величиной молекул. [c.573]

    Высокоэластичное состояние. Свойства, характерные для высокоэластичного состояния, обусловлены тем, что в этом температурном интервале тепловое движение становится достаточным для преодоления отдельными звеньями макромолекул взаимного притяжения и связи их со смежными звеньями соседних макромолекул, но является еще недостаточным для придания макромолекуле в целом способности перемещаться относительно смежных молекул, т. е. для того, чтобы перевести материал в текучее состояние. [c.573]

    В таких условиях большое значение приобретает гибкость цепей полимера, обусловленная возможностью внутреннего вращения отдельных частей макромолекулы относительно других ее частей ( 22). Это вращение вызывается тепловым движением молекул и усиливается с повышением температуры. Оно не бывает вполне свободным даже в газообразном состоянии вещества, а в твердом состоянии полимера прн тесном сближении смежных макромолекул эти стеснения становятся весьма значительными и вращение в этих условиях может вырождаться в крутильные колебания, т. е. в маятниковое вращение около некоторого среднего положения. Именно гибкость цепей полимера и является основной причиной особых свойств, характерных для высокоэластичного состояния. [c.573]

    ПОЛИАКРИЛОВАЯ КИСЛОТА — полимер акриловой кислоты. П. к.— твердый продукт белого цвета, нерастворим в мономере и в большинстве органических растворителей, растворяется в воде, формамиде. Выше 230—240° С начинается деструкция полимера без перехода в высокоэластичное состояние. Под действием УФ-лучей П. к. флуоресцирует ярко-голубым светом с красным оттенком. П. к. используют в качестве эмульгатора, как добавки, повышающие вязкость растворов и суспензий, для шлихтовки искусственного волокна, как полупродукт для синтеза многих полимеров, которые нельзя получить полимеризацией мономеров. [c.195]

    Природа высокоэластичного состояния хорошо характеризуется кинетической теорией упругости каучука. Согласно основным представлениям этой теории, при растягивании каучука происходит распрямление и сближение цепей, в то время как тепловое движение частиц, и в частности в.кг/мп вращение отдельных звеньев цепей, проти- [c.574]

    Эта величина для высокоэластичного состояния полимера обозначается чаще всего (вместо термина модуль упругости) специальным термином — модуль высокоэластичности, так как он на несколько порядков отличается от модуля упругости обычных материалов. [c.574]

    Интересно, что при растяжении каучука, характерного представителя полимеров, находящихся в высокоэластичном состоянии, наблюдается выделение теплоты (нагревание), а при обратном сокращении — поглощение теплоты, (охлаждение), в то время как у металлов эти тепловые эффекты обратны по знаку. Растяжение каучука не сопровождается изменением его объема, а растяжение металла связано с увеличением объема. [c.575]

    На рис. 202(по данным В. А. Каргина и Т. И. Соголовой) представлены кривые, выражающие влияние температуры на величину деформации при одинаковых условиях для образцов полиизобутилена, различающихся по степени полимеризации от Р=100 до Р = 62 500. При низких температурах деформация всех образцов очень мала и полимер ведет себя практически, как твердое тело. Горизонтальные площадки на кривых отвечают высокоэластичному состоянию, а резкий подъем кривых — началу пластической деформации, в данном случае — текучести. Температура появления заметной текучести значительно выше у полимеров с большей степенью полимеризации. Вследствие этого в основном увеличивается и температурный интервал высокоэластичного состояния. У полимера, обладающего высокой степенью полимеризации, высокоэластичное состояние распространяется на широкий [c.576]

    Наряду с этим в высокоэластичном состоянии полимеров степень кристалличности может сильно изменяться при вызываемых извне деформациях материала. Так, у натурального каучука кристалличность появляется при растяжении и полностью исчезает при возвращении в нормальное состояние (при обычных температурах). [c.578]

    Для линейных полимеров стеклообразное состояние и высокоэластичное состояние являются нормальными состояниями, относящимися только к различным температурным условиям. Температура, при которой охлаждаемый полимер переходит из высокоэластичного состояния в твердое (температура стеклования),является важной характеристикой полимера. Каучуки, например, отличаются тем, что их температуры стеклования ниже комнатной. Полимер 11 же с более высокой температурой стеклования находятся при обычных условиях в стеклообразном состоянии, но могут переходить в высокоэластичное состояние при достаточном повышении температуры, если она ниже температуры деструкции данного полимера. [c.583]


    Зависимость температуры сте- стирола М = 200 ООО) от температуры клевания от скорости охлаждения можно видеть, сопоставляя температурную зависимость изменения объема полимера при различных скоростях охлаждения. На рис. 209 представлена эта зависимость для полистирола. Коэффициент термического расширения данного полимера неодинаков для твердого и высокоэластичного состояний. Поэтому на кривых, выражающих зависимость объема полимера от температуры, обнаруживается четкий излом, отвечающий температуре стеклования. Ломаная линия А B D отвечает результатам, наблюдаемым при резком охлаждении полимера, а линия A B D — результатам, полученным при охлаждении его со скоростью 0,2° в минуту. Легко видеть, что температура стеклования (излом кривых) в последнем случае ниже, чем в первом. Это объясняется тем, что при быстром охлаждении не успевает достигаться равновесное распределение частиц. [c.583]

    Для обозначения резиноподобных материалов, включая резины из натурального и синтетического каучуков и различных пластмасс, применяют термин эластомеры. Основное отличие эластомеров от других полимерных материалов — способность к большим обратимым, так называемым высокоэластичным деформациям в широком интервале температур. Высокоэластичное состояние возникает благодаря способности цепных молекул полимеров к изменению формы. [c.5]

    Три физических состояния линейных полимеров. Линейные полимеры в зависимости от температуры могут находиться в трех состояниях. При относительно низких температурах они находятся в упруго-твердом (стеклообразном) состоянии при повышении температуры они переходят в высокоэластичное (каучукоподобное) состояние и при дальнейшем нагревании приобретают текучесть, переходя в пластичное (вязко-текучее) состояние. Температуры переходов из упруго-твердого в высокоэластичное состояние и из высокоэластичного в пластичное называются соот-иетственно температурой стеклования Тст и температурой текучести Т хек (рис. 198). Температуру стеклования иногда называют также температурой размягчения, характеризуя этим изменение свойств, происходящее не при понижении, а при повышении температуры. [c.569]

    В высокоэластичном состоянии полимер при данной внешней нагрузке обнаруживает гораздо более значительное изменение своей [c.216]

    Для каждого полимера в определенных границах температур принципиально возможны все три указанных состояния. Например, натуральный каучук при обычной температуре может обратимо растягиваться в 5—6 и более раз. При этой температуре каучук находится в высокоэластичном состоянии. Если же каучук охладить до температуры —73 °С, он становится твердым и хрупким, как стекло (стеклообразное состояние). При нагревании каучука до 180 °С он начинает обнаруживать пластические свойства и способность течь (вязко-текучее состояние). [c.250]

    Высокоэластическая деформация. Этот вид деформации характерен для полимеров, находящихся в высокоэластичном состоянии,и может являться составляющей общей деформации полимеров в пластичном состоянии. Деформативные свойства, характерные для высокоэластичного состояния, обусловлены тем, что в этом температурном интервале тепловое движение становится достаточным для преодоления отдельных звеньев макромолекул взаимного притяжения и связи их со смежными звеньями соседних макромолекул, но является еще недостаточным для придания макромолекуле в целом способности перемещаться относительно смежных молекул, т. е. для того чтобы перевести материал в текучее состояние. [c.216]

    Характерным представителем полимеров, находящихся в высокоэластичном состоянии, может служить сырой (невулканизованный) каучук. Температура стеклования каучука значительно ниже комнатной температуры. Деформация каучука в высокоэластичном состоянии в несколько раз выше, чем в стеклообразном, при одинаковой внешней силе. В высокоэластичном состоянии каучук способен удлиняться в 10 и более раз, не переходя ни предела упругости, ни предела прочности, т. е. не разрушаясь. На рис. 50 сопоставлены кривые растяжения каучука и стали. [c.217]

    У полимера, обладающего высокой степенью полимеризации, высокоэластичное состояние распространяется на широкий температурный интервал порядка 200° С, а полимер с Р = 100 практически не обнаруживает высокоэластических свойств. [c.218]

    ПЛАСТИФИКАТОРЫ — органические соединения, придающие пластичность полимерам и расширяющие интервал их высокоэластичного состояния. Введение П. повышает морозостойкость полимера, облегчает условия его переработки. П. применяются в производстве пластмасс, резины, искусственной кожи, лакокрасочных материалов. К П. относятся эфиры адипииовой и фталевой кислот, сложные эфиры фосфорной кислоты, различные масла и др. [c.193]

    Высокоэластичное состояние проявляется в способности полимера сильно вытягиваться (линейные размеры образца могут увеличиваться на сотни процентов от первоначальной длины). При снятии деформирующей нагрузки полимер принимает прежние (или почти прежние) размеры. [c.250]

    Диапазон давлений, охваченных в опытах, невелик (до 0,9 МПа), однако группа исследованных газов (О2, N2, СО2, СН4, СгИб, СзНв) включает вещества, резко отличные по молекулярным характеристикам. Полимеры, использованные для создания мембран, находятся в высокоэластичном состоянии (7 >Гст). [c.102]

    После введения рукава в трубу один конец его отбортовы-вается на фланец (рис. 5.7, а). Для прижатия рукава к стейкам трубы используется резиновая груша, которая с помощью троса проталкивается вдоль всей трубы (рис. 5.7, б). Для ускорения процесса полимеризации клея труба подогревается снаружи. После отверждения клея отбортовывается второй конец рукава. Применение находит также способ пневматического футерования, сущность которого заключается в том, что пластмассовая труба, введенная в стальную трубу и разогретая до высокоэластичного состояния, оирессовывается сжатым воздухом под давлением 0,5 — 1 МПа, выдерживается для склеивания с металлической трубой под этим давлением, а затем охлаждается воздухом под давлением. Вместо сжатого воздуха может использоваться горячая вода, масло, глицерин, температура нагрева которых должна быть равна температуре размягчения полимера. [c.184]

    Поверхностные эффекты проявляются на границах раздела расплавов с твердой фазой. Они сопровождаются существенным уменьшением адгезии и, как следствие, изменением характера течения вблизи твердах поверхностей. В частности, можно отметить следующие эффекты при периодическом режиме деформирования нарушение структурных связей, носящее как тиксотронный, так и деструктивный характер переход в высокоэластичное состояние и уменьшение вязкости, связанное с увеличением температуры поверхностных слоев за счет поглощения энергии и увеличения теплообмена со стенкой кавитацию и др. Совокупность воздействия поверхностных эффектов приводит к пристенному скольжению полимерных материалов, существенно влияющему на различные технологические процессы их формования  [c.139]

    При пластификации полимера используется его способность поглощать некоторые жидкости. Поглощение пластификатора связано с набуханием полимера, приводящим к увеличению его объема. Молекулы жидкости, проникая между звеньями цепей полимера, увеличивают расстояния и ослабляют связи между ними. Это приводит к понижению температуры стеклования, уменьшению вязкости и к другим эффектам, обусловленным ослаблением связей между молекулами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий высокоэластичному состоянию, смещается в область более низких температур. На рис. 52 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные [c.221]

    Обычно полимеры обладают способностью поглощать некоторые жидкости (с которыми совместим данный полимер). При этом происходит процесс набухания полимера, сопровождающийся увеличением его объема. Вследствие проникания молекул жидкости между звеньями цепей полимера увеличиваются расстояния и ослабляются связи между ними. Это и приводит к понижению температуры стеклования, уменьщению вязкости и к другим эффектам, обусловленным ослаблением связей между молеку. лами однако одновременно снижается и температура текучести. В результате температурный интервал, отвечающий области высокоэластичного состояния, смещается в область более низких температур. На рис. 216 показано влияние содержания трибутирина (сложного эфира глицерина и масляной кислоты) в поливинилхлориде на эти температурные параметры, а на рис. 217 представлено влияние пластификатора на термомеханические кривые, подобные рассмотренным ранее (см. рис. 202). При повышении содержания пластификатора (кривые 2 и 3) температуры стеклования и текучести понижаются, при достаточной концентрации пластификатора постепенно сближаются, причем область существования полимера в высокоэластичпом состоянии уменьшается. Эта область должна ы д [c.590]

    Холодная вулканизация заключается в том, что каучук погружают в раствор S2 I2 в сероуглероде нли, чаще (ввиду огнеопасности н токсичности S2),B легком бензине. При itom молекулы каучука присоединяют серу. Еще чаще применяется горячая вулканизация, при которой каучук смешивают с серой и нагревают смесь при 135—140°, обычно непосредственно в прессах, обогреваемых паром. В результате вулканизации физические свойства продукта заметно изменяются он переходит из термопластр чного в высокоэластичное состояние и приобретает нерастворимость в алифатических, ароматических и хлорированных углеводородах. [c.952]

    При более высоких температурах полимер приобретает эластичность температурный интервал от Тех до Гтек называется областью высокоэластичного состояния полимера. Протяженность интервала Ттек — Т ст зависит от природы полимера и может достигать 150 °С и более. У полимеров с жесткими молекулами ширина этого интервала очень мала и стремится к нулю, а у каучуков она наибольшая. Ею и определяется температурный режим эксплуатации изделий из пластмасс. [c.298]


Смотреть страницы где упоминается термин Высокоэластичное состояние: [c.82]    [c.107]    [c.311]    [c.320]    [c.570]    [c.573]    [c.573]    [c.574]    [c.575]    [c.582]    [c.49]    [c.215]    [c.217]   
Смотреть главы в:

Краткий курс физ. химии -> Высокоэластичное состояние

Краткий курс физической химии Изд5 -> Высокоэластичное состояние

Краткий курс физической химии Издание 3 -> Высокоэластичное состояние

Курс физической химии Издание 3 -> Высокоэластичное состояние


Химия (2001) -- [ c.437 ]

Пластические массы (1961) -- [ c.61 ]




ПОИСК







© 2025 chem21.info Реклама на сайте