Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез органических соединений металлов II группы периодической системы

    Благодаря высокой реакционной способности многие металлорганические соединения (особенно соединения металлов первой и второй групп периодической системы) нашли широкое применение в органическом синтезе. Так, на способности металлорганических соединений взаимодействовать с серой, кислородом, галогенами, селеном, теллуром основано их применение для получения спиртов, тиоспиртов и других производных углеводородов. Особенно широкое применение в синтезе углеводородов и их производных (спирты, альдегиды, кетоны, кислоты) находит реакция присоединения металлорганических соединений по кратным связям С=С, С=0, =N, N, =S, N=0 и S=0. [c.207]


    С развитием органической химии были получены (преимущественно путем синтеза) разнообразные вещества, содержащие в своем составе в непосредственной связи с атомами углерода и такие элементы, как металлы различных групп периодической системы Д. И. Менделеева (Ь1, На, К, М , 2п, Hg, А1, 5п, РЬ и др.), так и некоторые неметаллы (наиример 51). Соединения такого типа были названы элементорганическими соединениями. [c.302]

    Неводный растворитель нередко оказывается намного более подходящей средой для осуществления реакций синтеза, чем вода. А можно назвать случаи, и таких немало, когда в воде вообще невозможно синтезировать то или иное соединение. Известно, что многие вещества подвергаются реакции гидролиза. К таким прежде всего относят галогениды большинства элементов II[—VI групп периодической системы. Можно составить длинный перечень органических соединений, несовместимых с водой алкоголяты, амиды металлов, ангидриды кислот и т. д. [c.83]

    Сведения о возможности синтеза кислородсодержащих органических соединений на основе окиси углерода и водорода содержались уже в патентных описаниях 1913 г. [493, 510]. Как было указано, этими описаниями предусматривалось применение давления до 100— 2Q атм в качестве катализаторов использовались металлы VHI группы периодической системы, активированные щелочами. [c.199]

    Благодаря высокой реакционной способности многие металлорганические соединения (особенно соединения металлов первой и второй групп периодической системы) нашли широкое применение в органическом синтезе. Так, на способности металлорганических соединений взаимодействовать с серой, кислородом, галогенами, селеном, теллуром [c.190]

    Подавляющее большинство реакций карбонилирования органических соединений протекает в присутствии катализаторов, которые можно разделить на три основные группы кислотные (минеральные кислоты, ВГз и его комплексы), основные (неорганические основания) и соединения переходных металлов. Из них наибольший теоретический и практический интерес представляет последняя группа катализаторов. Несмотря на огромный эмпирический материал, накопленный за последние 30—40 лет в области каталитического синтеза с участием окиси углерода, основной трудностью, встречающейся при разработке новых и усовершенствовании существующих процессов, является отсутствие надежных критериев подбора катализаторов реакции. Поэтому не ослабевает интерес исследователей к выяснению механизма реакции и природы каталитической активности соединений переходных металлов [1—3]. Наиболее подробно изучен механизм гидроформилирования олефинов в присутствии карбонилов металлов УП1 группы периодической системы. Карбонилирование других классов химических соединений исследовано менее детально. Однако имеющийся экспериментальный материал позволяет выявить общие закономерности реакции карбонилирования, понять химизм процесса и наметить направления поиска эффективных катализаторов. [c.131]


    Первые три главы посвящены в основном современным представлениям о природе металл-углеродной связи и методам образования этой связи (реакции со свободными металлами, взаимодействие с галогенидами металлов, реакции металлоорганических соединений и др.). В последующих главах рассматриваются металлоорганические соединения элементов I—УП групп периодической системы даются сравнительные характеристики органических производных данной группы, методы синтеза и пути использования соединений. Рассматриваются также органические производные переходных металлов, особые типы металлоорганических соединений (перфторалкильные производные, карбонилы и карбиды металлов и др.). Отдельная глава посвящена применению металлоорганических соединений в органическом синтезе неметаллических производных. [c.4]

    Синтез элементоорганических полимеров имеет свои специфические отличия от чисто органического синтеза. Для органических соединений на-С иболее характерными являются связи 5 — р—аиа—я. В элементо-органических соединениях имеются еще и -орбитальные я-связи с1 — р и рл—р , когда одна или несколько свободных электронных пар атома не-посредственно связываются с атомом элемента, имеющим незаполненные р -или л-орбиты низкой энергии и удобной симметрии.Имеются также и другие, менее известные, типы взаимодействия связанных электронов, как это видно на большом числе новых типов соединений, относящихся к группе металло-<а ценов, гидридов, координационных полимеров и др. Связи типа рп, помимо элементов первого ряда периодической системы, т. е. у углерода,азота и кислорода, у других элементов встречаются редко. Более распространен-ными у элементоорганических соединений являются связи, включающие (1 — р -орбиты, однако эти связи не способны к полимеризации. Вследствие этого получение линейных элементоорганических полимеров чаще достигается путем поликонденсации или полимеризации циклов. [c.17]

    Формально к соединениям водорода со степенью окисления -1 относятся и комплексные гидриды, например боро- и алюмогидриды лития Li[BH4] и Li[AlH4] (тетрагидроборат и тетрагидроалюминат лития). Способность образовывать комплексные анионы характерна для координационно ненасыщенных простых гидридов бора, алюминия и других sp-металлов III группы Периодической системы. Комплексные гидриды термодинамически более стабильны по сравнению с простыми. Боро- и алюмогидриды щелочных и щелочно-земельных металлов плавятся без заметного разложения, хорошо растворяются во многих органических растворителях. В воде они также разлагаются с выделением водорода. Комплексные гидриды активных металлов получают либо прямым синтезом из простых веществ при повышенных температуре и давлении водорода, либо взаимодействием простых гидридов с галогенидами. Комплексные гидриды других металлов получают обменным разложением их галогенидов с боро- и алюмогидридами щелочных металлов, например [c.297]

    В качестве металлоорганического компонента (т. н. сокатализатора) в каталитических системах типа Циглера-Натта используются, главным образом, органические производные непереходных металлов 1-П1 групп периодической системы. Хотя присутствие сокатализатора не всегда обязательно для осуществления ионнокоординационной полимеризации непредельных соединений, в частности, сопряженных диенов, он зачастую оказывает существенное влияние на особенности процесса синтеза полимеров, благодаря выполнению различных функций (комплексобразователя, ал-килирующего агента, восстановителя, стабилизатора активных центров (АЦ) полимеризации, передатчика цепи и т. п.). К настоящему времени имеется много данных о заметном влиянии природы непереходного элемента, строения заместителей в сокатализа- [c.45]

    Каталитическая система на основе AlEtg и TI I4 является одним из примеров чрезвычайно большого числа известных в на-стояш ее время катализаторов Циглера—Натта. Общий принцип их синтеза состоит во взаимодействии металлорганических соединений (обычно производных металлов I, II или III групп периодической системы) с соединениями переходных металлов (преимущественно галогепидов IV—VIII групп). Так, в качестве первого из названных компонентов, кроме производных алюминия, могут быть использованы органические соединения бериллия, магния, цинка, натрия, лития и др. Среди производных металлов [c.404]

    Наиболее интересными исследованиями в области анио 1ной полимеризации являются работы по синтезу полимеров с применением в качестве катализаторов органических соединений металлов I—III групп периодической системы в сочетании с соединениями титана. Механизмы этих реакций подробно освещены в ранее цитировавшихся обзорах [470—478]. Следует заметить, что, несмотря на большое число исследований в этой области, до настоящего времени не установлен механизм этих процессов, удовлетворительно объясняющий как первую стадию реакции (инициирование), так и рост цепи, а также стереоспецифическое действие подобных катализаторов. [c.179]


    В заключение нельзя не отметить, что советские металлоорганики школы А. Н. Несмеянова проводили свои исследования не только в области органических соединений ртути, олова, свинца, сурьмы. Они обстоятельно изучили также пути синтеза металлооргапических соединений кальция, кадмия, алюминия [160], таллия [160— 162], титана, иттрия и многих других элементов, карбонилов металлов IV и VI групп периодической системы. [c.208]

    Раньше среди твердых катализаторов преобладали металлы, затем их во многих процессах заменили окислами металлов, в дальнейшем в ряде производств начали применять сернистые, бористые и хлористые соединения, а также кислоты (серную, фосфорную, плавиковую и другие), соли (ванадаты, хромиты, манганиты и др.) и некоторые органические соединения. Среди катализаторов имеются такие, которые применимы для многих химических процессов. В этом отношении представляют интерес элементы VIII группы периодической системы Менделеева. Как железо, никель и кобальт, так и платина и палладий являются катализаторами для многих разнообразных химических процессов — окисления, гидрирования, дегидрирования, некоторых синтезов и др. Для многих [c.72]

    Органические соединения металлов I, II и III групп периодической системы также были предложены для получения ртутноорганических соединений. Синтезы при помощи органических соединений натрия и серебра нетипичны и были применены только для двух особых случаев. В настоящее время почти уже оставлен один из наиболее старых способов получения ртутноорганических соединений — через органические соединения цинка. Известные перспективы имеет синтез алифатических ртутноорганических соединений при помощи алюминийорганических соединений, пока испытанный лишь на небольшом числе примеров синтеза как RsHg (R=Alk или Аг), так и RHgX (R = Alk), [c.36]


Смотреть страницы где упоминается термин Синтез органических соединений металлов II группы периодической системы: [c.124]    [c.126]    [c.128]    [c.129]    [c.72]    [c.102]    [c.103]    [c.689]    [c.197]    [c.6]    [c.75]    [c.179]    [c.190]    [c.129]    [c.169]    [c.185]   
Смотреть главы в:

Синтетические методы в области металлоорганических соединений ртути -> Синтез органических соединений металлов II группы периодической системы

Методы элементоорганической химии Ртуть -> Синтез органических соединений металлов II группы периодической системы




ПОИСК





Смотрите так же термины и статьи:

Группы периодической системы

Металлы в Периодической системе

Металлы соединения

Органические металлы

Периодическая система

Синтез органических соединений

Синтез системы

Система соединений

соединения группа



© 2025 chem21.info Реклама на сайте