Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Заместители, влияние на строение молекул

    Бензол — ароматическая система. Электронное строение молекулы бензола. Понятие ароматичности . Гомология и изомерия ароматических углеводородов. Номенклатура. Способы получения бензола и его гомологов. Химические свойства. Реакции электрофильного замещения. Механизм реакции, я- и о-Комплексы. Два типа ориентантов (I и П рода). Механизм ориентирующего влияния заместителей. [c.171]


    Авторы более ранних работ провели много исследований по определению так называемых рядов сродствоемкости (понятие, введенное Вернером [312]), т. е. влияния заместителей однако эти авторы не разграничивали понятий влияния строения молекул на равновесие и на скорость реакций (ср. [313]). [c.171]

    В данной книге в основном изложены современные электронные представления в органической химии как о строении органических соединений, так и о механизмах химических процессов, в том числе о механизмах изомерных превращений и молекулярных перегруппировок. Так как современные электронные представления были развиты на основе обширных исследований о зависимости скоростей процессов и их стереохимического течения от влияния заместителей, особенностей строения молекулы и характера действующих реагентов,—изложению современных представлений предшествует ознакомление с этими исследованиями. [c.4]

    В задачу статической стереохимии входит выяснение устойчивости конформационнЫх и конфигурационных состояний циклических систем, рассмотрение характерных особенностей их пространственного строения, выяснение влияния пространственного расположения заместителей на свойства молекулы в целом. Особенно большое значение для стереохимии циклических углеводородов имеет определение термодинамической устойчивости отдельных пространственных изомеров, так как из всех физикохимических показателей равновесная концентрация стереоизомеров наиболее тесно и однозначно связана с пространственным строением этих соединений. [c.7]

    Твердые углеводороды нефтяных фракций, так же как и жидкие, представляют собой сложную смесь парафиновых углеводородов нормального строения разной молекулярной массы изопарафиновых, различающихся по числу атомов углерода в молекуле, степени разветвленности и положению заместителей нафтеновых, ароматических и нафтено-ароматических с разным числом колец и длинными боковыми цепями, как нормального, так и изостроения, Температура плавления твердых углеводородов зависит от структуры их молекул, что видно иа примере трех типов углеводородов с одинаковым числом атомов углерода в молекуле (рис. 46), но с разными структурой и положением заместителя. Так, наиболее резко температура плавления углеводородов снижается при перемещении заместителя от первого атома углерода в цепи, у-алкана ко второму. При дальнейшем перемещении заместителя к центру молекулы температура плавления продолжает снижаться, причем насыщенные заместители (см. кривые 2 и 3) оказывают более сильное влияние л а снижение температуры плавления углеводорода, чем фенильные радикалы. [c.151]


    К сожалению, подавляющее число исследованных до последнего времени индивидуальных сераорганических соединений относится к группе сульфидов жирного и жирно-ароматического рядов. Сернистые соединения циклического строения и прежде всего гетероциклические с атомом серы, входящим в кольцо (тиофены, тиофаны и др.), исследованы крайне недостаточно. Общей для всех исследованных соединений относительно прочности С — З-связей является следующая закономерность прочность связи углерод — сера возрастает в ряду меркаптаны — сульфиды — тиофены. В пределах каждой из приведенных групп сераорганических соединений также наблюдается различие в прочности связи С — 8, обусловливаемое характером строения углеводородной части молекулы. Например, ароматические меркаптаны (тиофенолы) более стойки, чем алифатические. В ряду алифатических меркаптанов связь С — 8 сильно ослабляется, если атом серы связан с третичным углеродным атомом. Эта зависимость распространяется и на алифатические сульфиды. Влияние числа и природы заместителей в кольце на прочность связи в тиофеновом кольце изучено очень слабо, однако и здесь отмечается определенная зависимость между строением молекулы и прочностью связей С — 8. [c.372]

    ПРОСТРАНСТВЕННЫЕ ЗАТРУДНЕНИЯ СТАТИЧЕСКИЕ (стерические препятствия)— затруднения, или препятствия, для. такого размещения атомов в молекуле, при котором сохранялись бы нормальные валентные углы и межатомные расстояния, н частности для ароматических н сопряженных систем — планарное строение молекулы. П. з. с. возникают при отталкивании химически не связанных, но близко расположенных в пространстве атомов, расстояние между которыми ограничивается суммой их ковалентных радиусов. В таком случае П. 3. с. приводят к изменению нормальных валентных углов, к нарушению планарного строения ароматических и сопряженных систем, что можно наблюдать, например, по изменению окраски, отклонению дипольного момента и другим свойствам от рассчитанного значения. Молекулы, не имеющие П. з. с., могут проявлять их по отношению к другим молекулам, с которыми они реагируют, если возле реакционного центра молекулы близко расположены большие заместители, препятствующие доступу реагента к этому центру (П. з. динамические). При этом происходит снижение реакционной способности соединений без электронного влияния заместителей. П. 3. с. можно предвидеть заранее изучением моделей исследуемых молекул или построением их масштабных графических формул с учетом ковалентных радиусов близко расположенных атомов, [c.205]

    Измерения энергий связи валентных электронов молекул в газовой фазе позволяет проверить точность теоретич. расчетов, установить закономерности электронного строения молекул в изоэлектронных, изовалентных и т. п. рядах, выявить влияние заместителей, установить их донорно-акцепторные св-ва. Фотоэлектронные спектры известны примерно для 10 000 своб. молекул. [c.185]

    Стабильность молекулярных ионов циклических сульфидов уменьшается с увеличением молекулярного веса. В логарифмических координатах зависимость Т м моноциклических сульфидов от числа атомов углерода в молекуле имеет линейный характер (рис. 1). Все экспериментальные точки, соответствующие различным изомерам и гомологам, заключены между двумя сходящимися лучами, которые пересекаются в точке, соответствующей примерно 35 атомам углерода в молекуле. С увеличением длины алкильных заместителей влияние различий в строении ядра на уменьшается, и при достаточно большом числе атомов углерода в молекуле это влияние перестает сказываться. Зависимость моноциклических сульфи- [c.287]

    Влияние пространственных затруднений на спектры поглощения и флуоресценции функциональных замещенных 1,4-дистирилбензола подробно рассмотрено в работе Хеллера [23]. Небольшие по объему заместители—метоксигруппы в положениях 2 или 2 (6 или 6 ) вызывают длинноволновое смещение максимумов, а большие по размерам — метильная группа и атомы хлора в тех же положениях— нарушают плоскостное Строение молекул, следствием чего является гипсохромный эффект. [c.51]

    Уже в 1895 г. Гольдшмидт определил константы скорости этерификации ряда орто-замещенных ароматических кислот и сделал выводы о влиянии положения и природы заместителя в молекуле на величины констант скоростей реакций [123]. Автор считал, что связь между строением (молекулы.—5. К.) и скоростью реакции можно удовлетворительно объяснить, так же как и большую часть вопросов химической кинетики [123, стр. 3227]. [c.32]

    Константа о отражает влияние строения молекулы — э4к[)ект группировки или заместителя ст является кокстаптой заместителя и называется константой Гаммета. [c.78]

    Опыт показывает также, что те заместители при атомах индексной группы молекулы, которые силшо изменяют энергии связи между атомами индексной группы, влияют и на величину энергии связи с катализатором. Такими заместителями в особенности являются группы, кратные связи в которых сопряжены с кратными связями йнутри индексной группы во время ее реакции, например фенильная группа в случае дегидрогенизации. Это также находится в согласии с мультиплетной теорией. Влияние строения молекул на энергии связи с катализатором было подробнее исследовано в недавней работе, проведенной с окисью церия [33]. [c.24]


    В будущем с факторами строения молекул должны быть сопоставлены не только Еч , но и другие полярографические параметры, например вычисляемые из кинетических токов константы скорости сверхбыстрых реакций, в частности протонизации. Такая работа предпринята Я- П. Страдынем и В. П. Кадыш для выяснения скоростей протонизации енолят-анионов индандионового-1,3 ряда донорами протонов в зависимости от характера заместителей в 2-положении. Далее, следует поставить эксперименты для оценки влияния строения молекул на механизм электровосстановления, наклон волны. Даже если при этом играет роль значительное число экспериментальных факторов, то строение молекулы является [c.111]

    Проведены обширные исследования по определению влияния строения молекул на разложение феноксиуксусных кислот в почве [81, 82, 119, 120]. Рассматривая влияние заместителей в кольце на персистентность феноксиуксусных кислот, Одес [81, 82] выявил следующие закономерности  [c.37]

    Данные табл. 2 позволяют проиллюстрировать влияние строения молекул галогенидов олова на свойства электроноакцепторного центра-атома 5п. При переходе от четыреххлористого олова к оловоорга-иическим хлоридам акцепторная способность атома олова заметно па дает с ростом степени алкилирования. Хорошая корреляция энтальпий реакций образования комплексов с ацетоном и трибутилфосфиноксидом (рис. 2) с Е о -—констант заместителей Тафта свидетельствует о том, что преимущественное влияние на акцепторные свойства атома олова оказывает индуктивный эффект заместителей. [c.48]

    М. о. с. лежит в основе мол. спектрального анализа. Особое значение для анализа и исследования строения молекул имеют спектры в ИК области, к-рые возникают в результате колебат. (и вращат.) переходов и состоят из боль-шдго числа полос с четко выраженной структурой. Спектры в УФ и видимой областях связаны с электроино-колебат. переходами. Колебат. структура в Уф спектрах проявляется только при низких т-рах в обычных условиях она приводит К диффузным (размытым) спектрам, по к-рыи трудно проводить идентификацию соединений. Прн иаличии в молекуле хромофоров в УФ спектре появляются характерные полосы, что позволяет осуществлять групповой анализ. УФ спектроскопию широко используют для изучения электронного строения молекул, таутомерии, влияния заместителей на хим. св-ва аром, соед., для установления типа хим. связей, определения параметров пов-стей 1ютенц. энергии возбужд. электронных состояний молекул и т. д. Все виды М. о. с. используются для исследования кинетики хим. р-ций. [c.347]

    Интерпретировать инфракрасный спектр не так просто. Отдельные полосы могут маскироваться в реаультате перекрывания с другими полосами. При частоте, вдвое большей частоты основной полосы, могут проявляться обертоны (гармоники). Полоса поглощения определенной группы может сдвинуться в результате влияния различных факторов сопряжения, электронодонорного эффекта соседнего заместителя, углового напряжения или вандерваальсовых сил, водородной связи и вследствие этого может быть ошибочно определена как полоса совершенно иной группы. (С другой стороны, если знать, чем вызваны такие сдвиги, можно сделать определенный вывод о строении молекулы.) [c.402]

    Мол. системы, для к-рых возможно разделение орбиталей на о- и я-орбитали, наз. часто я-электронными системами или просто я-системами. Как правило, о-орбитали носят локализованный характер, обычно они двухцентровые. я-Орбитали существенно менее локализованы и могут иметь трех-, четырех- или многоцентровый характер, чго в химии связывают с понятием сопряжения связей (бугадиен, бензол и т. п.). При изменении строения молекулы (напр., введении заместителей) изменения св-в связывают именно с я-орбиталями, а изменением о-орбиталей пренебрегают. Взаимное влияние 7 opби-талей и остальных мол. орбиталей учитывают как изменение св-в молекулы при введении заместителя (поляризацию) или как дополнит, сопряжение, используя методы, напр., возмущений теории. Надежность результатов, получаемых в я-Э. п., определяется тем, насколько удалены друг от друга локализованные мол. орбитали, взаимодействующие с системой я-мбиталей, а также тем, насколько различаются эти мол. орбитали по энергии. [c.442]

    От уже имеющихся учебных пособий по квантовой химии (Минкин В И, Симкин Б Я, Миняев Р М Теория строения молекул М Высшая школа, 1979, Абаренков И В, Братцев В Ф, Тулуб А В Начала квантовой химии М Высшая школа, 1989) настоящее учебное пособие отличается прежде всего акцентом на физические основания этой области науки, детальным разъяснением самого понятия химическая связь на базе электростатической модели , вытекающей из фундаментальной теоремы Гельмана — Фейнмана, обсуждением соотношения классических и квантовых моделей молекул, влияния заместителей и т д Изложение целого ряда вопросов, составивших содержание га 2-5, 8, практически целиком базируется на оригинальных результатах авторов настоящего учебника, опубликованных в различных журналах и монографиях [c.7]

    В работе [38] подробно изучено влияние природы и строения заместителей в боковой цепи дипептидов на интенсивность их сладкого вкуса. Высказано предположение [39], что группа X, отвечающая за сладкий вкус эфиров дипептидов, связана с центром разветвленной боковой цепи, например в аспартаме —это бензольное ядро. Показано [40,41], что чем полнее соответствие между размерами и пространственным строением молекул сладкого вещества и вкусовых рецепторов, тем интенсивнее ощущение сладкого вкуса. Поэтому форма условной сладкой единицы может использоваться для определения конформации аспартама, хорошо адсорбируемого на поверхности рецептора (рис. 1.3, аУ Полученная таким образом информация указывает, что поверхность рецептора соответствует определенным структурным элементам молекул сладких веществ разли<Гных tипoв. Это позволяет прогнозировать структуру аналогов аспартама и других соединений, обладающих сладким вкусом. [c.19]

    Выявлено влияние строения фенола на его реакционоспособность в рамках уравнения Гаммета - введение электронодонорных заместителей в молекулу фенола приводит к увеличению скорости реакции lg к = -(1.74  [c.22]

    Вообще сопоставление результатов, получаемых методом фотоэлектронной эмиссии (ФЭС) при исследовании электронного строения молекул в газовой фазе, с результатами электрохимических превращений позволяет достаточно убедительно интерпретировать механизм химических и электрохимических превращений веществ. Китаев [И, с. 93—94], сопоставив данные методов ФЭС и электроокисления для адамантана и его производных, выявил корреляцию между локализацией положительного заряда в катион-радикалах этих соединений и их электрохимическим поведением. В ряде работ проведено параллельное изучение различных соединений при помощи полярографии и метода ЯМР. Например, Беннет и Эльвинг [56] на примере различных алифатических и ароматических соединений показали,, что линейная зависимость между 1/2 и параметрами смещения ЯМР (величинами химических сдвигов, вызываемых заместителями) наблюдается во всех случаях, за исключением алифатических бромпроизводных, нескольких алифатических нитрозаме-щенных, нитробензолов и эфиров хлоруксусной кислоты. Нарушение линейной зависимости в этих случаях может быть связано, по мнению авторов, с влиянием на 1/2 более тонких эффектов — пространственных особенностей строения молекул [c.56]

    Такое влияние строения непредельного фосфорорганического соединения на реакцию с перфторалкилиодидами нельзя объяснить только электрофильными свойствами перфторалкильных радикалов. Известно [23, что активность олефинов в гомолитической реакции с трифторметилиодидом изменяется в ряду пропилен этилен > > винилфторид. Введение электроноакцепторных заместителей в молекулу олефина уменьшает элeкtpoннyю плотность на атоме углерода метиленовой группы и снижает скорость реакции. [c.205]

    Получен ряд выводов о влиянии природы и полокения заместителей и особенностей строения молекул растворителя на электронное строение. [c.102]

    Одна нз причин широкого использования гетероциклических соединений — возможность тонко манипулировать их структурой для достижения необходимых модификаций свойств. Как мы увидим в гл. 2, многие гетероциклы могут быть отнесены к одной из нескольких широких групп структур которые обладают сходными свойствами, но имеют и значительные внутригрупповые различия, в том числе вариации кислотности и основности, полярности, различную чувствительность к атаке электрофилом или нуклеофилом. Разнообразие структур гетероциклических систем обусловлено возможностью замены одного гетероатома на другой и изменения положения одного и того же гетероатома в кольце. Другой вариант модификации структур многих гетероциклов — возможность введения в их структуру функциональных групп либо в качестве заместителей, либо непосредственно в циклическую систему. Например, оснбвные атомы азота могут быть введены в молекулу либо в виде экзоциклической аминогруппы, либо как часть кольца. Это обусловливает чрезвычайную изменчивость структур за счет наличия или имитации функциональных групп. Примером последней может служить имитация циклической системой 1Н-тетразола карбоксильной группы, так как они подобны по кислотности и стерическим требованиям (гл. 8). Одной из основных целей последующих глав этой книги является создание основы для понимания и предсказания влияния строения гетероциклических соединений на их свойства. Вооружившись этим пониманием, химик-гетероциклист может сконструировать структуру в соответствии с разнообразными требованиями, модифицируя гетероциклический компонент. [c.10]

    Основность алнфатнческнх амннов. Сравнивая электронное влияние радикалов в молекулах первичного, вторичного и третичного алифатических аминов, можно предположить, что третичные амины, имеющие три алкильных заместителя, обладающих +/-эффектом, будут более сильными основаниями, чем вторичные и первнчные амины. Однако стерические факторы (пространственное строение молекулы), определяющие доступность основного центра для атаки протоном, оказывают прямо противоположное влияние. Чем больше радикалов имеется у атома азота, тем труднее он будет атаковаться протоном. Следовательно, самыми сильными основаниями должны быть первичные и вторичные амины со сравнительно короткими и неразветвленными радикалами. Сольватация (взаимодействие молекулы растворенного вещества с молекулами растворителя) оказывает на основность влияние, сходное с влиянием стерических факторов, поскольку с увеличением числа и разветвленности углеводородных радикалов уменьшается способность катиоиа заменхенного аммония (сопряженной кислоты) связывать молекулы растворителя. Таким образом, чисто умозрительные теоретические рассуждения не позволяют предсказать сравнительную основность алифатических аминов. [c.211]

    Отмеченные выше различия для индивидуальных энергий связи, как было указано выше, в катализе обусловливаются влиянием так называемых внеиндексных заместителей, которое часто взаимно компенсируется (см. уравнение (1.9)). Они начинают играть определенную роль, например, при появлении сопряжения или других особенностей в строении молекул. [c.63]

    На диссоциацию по связи О—О оказывают большое влияние строение исходной перекиси. Так, электроноакцепторные группы (СК, КОз), введенные в молекулу перекиси бензоила, замедляют разложение перекиси электронодонорные группы (СНд—, СНдО—, СНдЗ—) увеличивают скорость мономолекулярного распада перекисей. Сильное ускорение на радикальный распад перекиси оказывают заместители в о-ноложе-нии бензольного ядра. Так, например, перекись о-иодбензоила [23] распадается намного быстрее незамещенной перекиси бензоила  [c.201]

    Зависимость реакционной способности пероксирадикалов от строения можно рассматривать и в рамках представлений о влиянии полярных заместителей у бепзильного атома углерода. Известно [10, 11], ч1 о скорости многих радикальных реакций замещения хорошо коррелируются с -константами Брауна, когда заместители вводятся в молекулу. В нашем случае заместители вводятся в радикал. Тем не менее при сравнении величин 2ап-канстант заместителей в пероксирадикалах со значениями Д для реакций соответствующих пероксирадикалов с молекулами алкилароматических соединепий между ними наблюдается линейная зависимость с коэффициентом пропорциональности такого же порядка, как в случае корреляции между АР и ( . [c.52]

    Найденное Гутовским и др. соответствие между константами Гаммета позволяет сделать вывод об электронной природе влияния заместителя, выражаелюй шкалой а-констант, на реакционную способность. Как видно из рис. 50, отклонения отдельных точек от соответствующих прямых во многих случаях превышают ошибки в измерениях б и а. Эти отклонения связаны, видимо, с тем, что а-константы, определенные по константам скорости или равновесия, зависят в некоторой степени от электронного строения молекулы в переходном состоянии, тогда как химические сдвиги являются характеристикой только основного состояния молекулы. [c.380]

    В дальнейших работах Б. А. Казанского, 3. А. Румянцевой и М. И. Батуева было изучено расщепление метилциклопентана и двузамещенных гомологов циклопентана.В этих работах было показано, что скорость данной реакции зависит от строения молекулы углеводорода, иначе говоря, от числа заместителей и от их взаимного расположения. Быстрее всех гидрируется циклопентан метилциклопентан — приблизительно в полтора раза медленнее, причем, хотя расщеплению с присоединением водорода подвергаются все связи пятичленного кольца, но преимущественно отстоящие через один углеродный атом от углерода, связанного с заместителем. В 1.1-диметилциклопентане пятичленное кольцо расщепляется примерно с такой же скоростью, как в метилциклопентане 1.2-диметилциклопентан реагирует в пять раз, а 1.3-диметилциклопентан — в 10—И раз медленнее, чем циклопентан. На всех этих примерах было показано, что связи, соседние с углеродом, несущим заместитель, разрываются под влиянием водорода в присутствии катализатора в наименьшей степени, а в случае 1.1-диметилциклопентана, у которого два заместителя находятся у одного и того же атома углерода, связи, соседние с этим углеродом, не разрываются совсем. Б. А. Казанский и Т. Ф. Буланова показали, что на платинированном угле энергия активации реакции каталитической гидрогенизации циклопентана с расщеплением кольца равна 34000—35000 ккал/моль. [c.128]

    Влияние пространственного строения молекулы антиокислителя хорошо видно на примере экранированных алкилфенолов наиболее активными из них являются фенолы, в которых оксигрунна в положении 1 защищена заместителями в положениях 2 и 6. [c.149]

    Помимо количества заместителей и их положения в молекуле нафталина, на глубину деалкилирования углеводородов оказывает влияние строение заместителей. С увеличением длины углеродной цепи алкильного заместителя в молекуле нафталина скорость деалкилирования возрастает. Относительные скорости деалкилирования 2-метил, 2-зтил и 2-изопропилнафталина, рассчитанные на основании результатов, полученных при гидрогенизации углеводородов при температуре 520° С, давлении 40 ат, с алюмокобальтмолибденовым катализатором равны отношению 1 2 3. [c.52]

    Вторая область применения — это спектроскопическое выяснение строения молекул. Поглощение света определенной длины волны и определенной интенсивности свидетельствует о наличии в молекуле особых светопоглощающих групп (хромофоров), а сдвиг длины волны или изменение интенсивности поглощения по сравнению с их стандартными значениями могут указывать на характерное влияние заместителя или на стерический эффект, или же служит признаком особого вида взаимодействия между хромофором и его внутри- или межмолекулярным окружением. Известны эмпирические правила, касающиеся изменения длины волны и интенсивности поглощения под влиянием замещения для ряда хромофоров [27], однако в общем случае для второй области применения спектроскопии требуется некоторое знание характера электронных переходов, вызывающих появление исследуемых полос поглощения. [c.320]

    Уравнение (XIV. 13), видимо, отражает влияние не специфической соль- ватации, а зависимость истинной полярности среды от строения молекул X растворителя. Истинная полярность (величины ° или (Ь—1)/(20+1)) о должна быть тесно связана с дипольными моментами молекул растворителя. В этой связи указанное уравнение перекликается с осуществленными Экснером [476] корреляциями дипольных моментов различных типов соединений (в и том числе и замещенных бензолов) с постоянными заместителей. [c.302]

    Замеченный Келласом обратный порядок влияния природы галогенов на скорость этерификации по сравнению с аналогичными зависимостями в алифатическом ряду обусловливается своеобразным влиянием строения ароматических соединений на скорость их превращений, что было отмечено еще Менщуткиным в 1881 г. [72]. Позже (в 1897 г.) Меншуткин начал разрабатывать другой ( химический ) аспект влияния орто-заместителей на скорости превращений ароматических молекул. Рассматривая скорости взаимодействия бромистого аллила с замещенными анилинами, Меншуткин пришел к выводу, что при резко выраженных химических свойствах боковой цепи ее влияние будет направлено в одну сторону при всех положениях (подчеркнуто мной.— В. К-) относительно амидогруппы. При слабовыраженных химических свойствах боковой цепи, напротив, смотря по положению ее в бензольном кольце (подчркнуто мной.— В. К.), может иметь место или повышение, или понижение константы скорости [85, стр. 618]. [c.33]

    Так, Вегшайдер [141], исследуя бромирование этилена, показал, что строение молекулы влияет на скорость ее взаимодействий электрохимическим характером атомов, положением заместителей относительно реакционного центра молекулы (стерическое и электрохимическое влияния), а также стерическими затруднениями для реакции. [c.36]


Смотреть страницы где упоминается термин Заместители, влияние на строение молекул: [c.391]    [c.234]    [c.4]    [c.416]    [c.431]    [c.16]    [c.28]    [c.37]    [c.64]    [c.347]    [c.392]    [c.64]    [c.84]   
Теоретические основы органической химии (1979) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Заместителей влияние

Молекула строение



© 2025 chem21.info Реклама на сайте