Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Калориметрия и дилатометрия полимеров

    Значения параметров уравнения (2.7), приведенные в табл. 2.5 и 2.6, получены путем стандартной обработки соответствующих изотерм при исследовании кристаллизации полимеров из расплава методами дилатометрии, рассеяния деполяризованного света или сканирующей калориметрии. Значения а (i) определяли как текущую степень кристалличности по формуле, совпадающей с уравнением("2.1), т. е. [c.195]


    Наиболее точным методом определения Тт является дилатометрия, позволяющая фиксировать точку пересечения, т. е. Тт, восходящей ветви кривой удельного объема полимера в интервале Т <Тт линейного участка при Т > Т с точностью до 0,1—0,2 К. Однако при длительных дилатометрических экспериментах в полимере могут происходить структурные изменения, в результате которых измеренная Т,п не будет соответствовать структуре исходного образца. Этого удается избежать с помощью быстрого нагревания образца (метод сканирующей калориметрии), исключающего как возможность структурных перестроек, так и перегрев, Истинное значение Тт находят путем экстраполяции кривой зависимости текущих значений Тт, измеренных методом сканирующей калориметрии при различных скоростях нагревания до = 0. Поскольку под Тт понимают либо температуру, соответствующую максимуму на эндотерме плавления, либо точку совпадения конца эндотермы с базовой линией прибора, погрешность значений Тт, приведенных в табл. 2.3, составляет 3—5 К. [c.156]

    КАЛОРИМЕТРИЯ И ДИЛАТОМЕТРИЯ ПОЛИМЕРОВ [c.8]

    Важная информация о структуре сетчатых полимеров получена при исследовании их молекулярной подвижности методами механической и диэлектрической релаксации, дилатометрии, термостимулированной деполяризации, ЯМР, ЭПР, калориметрии [1, 8, 14, 26]. Эги данные позволяют косвенно судить о некоторых структурных особенностях полимеров, в частности о характере подвижных фрагментов и природе [c.41]

    Для большинства промышленно производимых полимеров температура стеклования и степень кристалличности общеизвестны. Если же они неизвестны, их можно определить с помощью простых методов. Значения Тст определяют с помощью дифференциальной сканирующей калориметрии (ДСК) или дифференциального термического анализа (ДТА). Ряд других методов, в том числе хроматография и дилатометрия, могут также использоваться с этой целью. Для определения степени кристалличности можно применять широкий набор методов ДСК, ДТА, методы рентгеновской дифракции (или рассеяния), измерение плотности полимера, а также спектральные методы (ИК- и ЯМР-спектроскопия). Ниже эти методы описаны очень кратко. Далее в этой главе представлены другие методы, применяемые для характеристики композиционных мембран. [c.196]

    В основе термодинамических критериев лежит изменение термодинамических свойств, которое может быть обнаружено, например, методами дилатометрии, калориметрии и дифференциального термического анализа (ДТА). Метод дилатометрии позволяет проследить характер изменения объема полимера при кристаллизации или плавлении, метод калориметрии дает возможность определить количество тепла, выделяемое или поглощаемое при фазовом переходе, а метод ДТА — найти температуру или температурный интервал фазового превращения. [c.182]


    При анализе численных значений Tg для разных полимеров необходимо учитывать кинетическую природу процесса стеклования, в силу которой экспериментальные значения Tg, определенные разными методами, обычно соответствуют разной продолжительности измерений и поэтому могут значительно различаться. Например, в результате изменения скорости охлаждения или нагрева (а также частоты измерения) исследуемого образца на порядок при энергии активации стеклования 350 кДж/моль Tg изменяется от 8—9 К (при Tg = 400 К) до 0,5—1 К (при Tg = 200 К). Экспериментальные значения Tg можно считать конкретной физической характеристикой полимера, если они относятся к некоторой стандартной временной шкале. Все значения Tg, приведенные в табл. 1.1—1.5,соответствуют принятой в настоящее время стандартной скорости изменения температуры около 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и др.). Для большинства полимеров погрешность табулированных значений не превышает 2—5 К, относительные погрешности значений ДСр, Да составляют в среднем 2—5 %. [c.14]

    Для определения фазовых состояний и переходов полимера используют структурный и динамический критерии. Структурный критерий основан на оценке характера изменения структуры полимера на молекулярном уровне, которое может быть зафиксировано дифракционными методами исследования (рентгенография, электронография). Термодинамические критерии основаны па оценке изменения термодинамических свойств, которое может быть обнаружено методами дилатометрии, калориметрии, дифференциально-термического анализа (см. гл. 14), обращенной газовой хроматографии (см. гл. 17). [c.145]

    Сейчас уже не нужно доказывать, что любое обсуждение свойств полимера должно включать рассмотрение влияния времени и температуры. Влияние времени будет обсуждаться позднее, а основной темой данного раздела будет влияние температуры. Наиболее важные изменения в механических свойствах имеют место при температурах фазовых переходов или релаксации. Поэтому необходимо точно определить переходы первого и второго рода. Однако не всегда исследователи придерживаются единой точки зрения относительно областей этих переходов, в основном это связано с тем, что используются различные методы. Такие статические измерения, как дилатометрия и калориметрия, обычно дают более низкую температуру для того же самого перехода, чем динамические методы (механические, диэлектрические и ЯМР). При измерениях динамическими методами с повышением частоты точка перехода сдвигается в область более высоких температур. Еще больше запутывает вопрос то обстоятельство, что статические методы иногда могут показать существование перехода, не обнаруживаемого динамическими методами, и наоборот. [c.414]

    При анализе значений Tg для разных полимеров необходимо не забывать кинетическую природу процесса стеклования, в силу которой значения Tg, определенные различными методами, обычно соответствуют различной продолжительности наблюдения и поэтому могут значительно различаться. Например, изменение Tg в результате изменения скорости охлаждения или нагревания (а также частоты измерения) исследуемого образца на порядок для типичного значения энергии активации стеклования = 335 кДж/моль (см. разд. П. 1) составляет согласно уравнению (11.9) от 8—9 К (для Tg = 400 К) до 0,5—1 К (для Те = = 200 К). Тем не менее, экспериментальные значения могут считаться конкретной физической характеристикой полимера при условии, что они относятся к некоторой стандартной временной шкале. Все значения Tg, рассматриваемые в дальнейшем, соответствуют принятой в настоящее время стандартной скорости изменения температуры 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и т. п.) [55, 56, 59]. [c.79]

    Основным источником экспериментальных данных о кинетике кристаллизации полимеров в блоке являются тепловые методы — дилатометрия и калориметрия. Типичная дилатометрическая изотерма кристаллизации, схематически показанная на рис. 11.25, включает основной 5-образный участок и пологую часть, растянутую на значительный интервал времени. 5-образный участок изотермы характеризует первичную кристаллизацию, соответствующую превращению исходного расплава в кристаллический материал с определенной степенью кристалличности. На этой стадии процесса кристалличность должна развиваться в соответствии с уравнением (11.42). Пологая часть изотермы соответствует вторичной кристаллизации, в процессе которой происходит медленное совершенствование образовавшейся аморфно-кристаллической структуры. [c.103]

    С. т. существенно зависит от частоты и интенсивности воздействия на полимер. Поэтому различные методы определения С. т. могут давать несовпадающие значения. С. т., определенная статич. методами, всегда ниже С. т., определенной динамич. методами. К первым относят термомеханич. метод (см. Термомеханическое исследование), статич. релаксационные методы (измерение пoлf зучести и релаксации напряжения), дилатометрию, калориметрию, радиотермолюминесценцию (см. Термолюминесценция) и др. ко вторым — Александрова — Лазуркина частотно-температурный метод, диэлектрич. метод, а также ЯМР, ЭПР и др. [c.249]


    Большинство литературных данных свидетельствует о корреляции результатов методов рентгенографии, ИК-спектроскопии, дилатометрии, калориметрии -Но результаты сопоставления оказываются иногда различными для разных полимеров . Так, для ряда полимеров кинетические кривые кристаллизации, измеренные по тепловыделению и дилатометрически, подчиняются уравнению Колмогорова — Аврами (15) с разными значениями п, что может свидетельствовать о разной чувствительности этих методов к разным морфологическим уровням процесса кристаллизации (или об изменении свойств аморфной фазы, входящей в поликристаллы). [c.86]


Смотреть страницы где упоминается термин Калориметрия и дилатометрия полимеров: [c.76]    [c.77]    [c.132]   
Смотреть главы в:

Теплофизические методы исследования полимеров -> Калориметрия и дилатометрия полимеров




ПОИСК





Смотрите так же термины и статьи:

Дилатометр

Калориметр

Калориметрия



© 2025 chem21.info Реклама на сайте