Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия активации стеклования

    В заключение остановимся на особенностях изменения энергии активации процесса стеклования при переходе от исходных компонентов к смесям несовместимых полимеров. Энергию активации стеклования рассчитывали по формуле [c.250]

    При анализе численных значений Tg для разных полимеров необходимо учитывать кинетическую природу процесса стеклования, в силу которой экспериментальные значения Tg, определенные разными методами, обычно соответствуют разной продолжительности измерений и поэтому могут значительно различаться. Например, в результате изменения скорости охлаждения или нагрева (а также частоты измерения) исследуемого образца на порядок при энергии активации стеклования 350 кДж/моль Tg изменяется от 8—9 К (при Tg = 400 К) до 0,5—1 К (при Tg = 200 К). Экспериментальные значения Tg можно считать конкретной физической характеристикой полимера, если они относятся к некоторой стандартной временной шкале. Все значения Tg, приведенные в табл. 1.1—1.5,соответствуют принятой в настоящее время стандартной скорости изменения температуры около 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и др.). Для большинства полимеров погрешность табулированных значений не превышает 2—5 К, относительные погрешности значений ДСр, Да составляют в среднем 2—5 %. [c.14]


    Интересно сравнить кажущиеся энергии активации стеклования, полученные разными методами. Как видно из рис. 1У.48 (кривая 2), кажущаяся энергия активации по термомеханическому ме- [c.233]

Рис. 1У.48. Зависимость кажущейся энергии активации стеклования от содержания ДОФ для диэлектрических (/) и термомеханических (2) измерений. Рис. 1У.48. Зависимость <a href="/info/96263">кажущейся энергии активации</a> стеклования от содержания ДОФ для диэлектрических (/) и термомеханических (2) измерений.
    При анализе значений Tg для разных полимеров необходимо не забывать кинетическую природу процесса стеклования, в силу которой значения Tg, определенные различными методами, обычно соответствуют различной продолжительности наблюдения и поэтому могут значительно различаться. Например, изменение Tg в результате изменения скорости охлаждения или нагревания (а также частоты измерения) исследуемого образца на порядок для типичного значения энергии активации стеклования = 335 кДж/моль (см. разд. П. 1) составляет согласно уравнению (11.9) от 8—9 К (для Tg = 400 К) до 0,5—1 К (для Те = = 200 К). Тем не менее, экспериментальные значения могут считаться конкретной физической характеристикой полимера при условии, что они относятся к некоторой стандартной временной шкале. Все значения Tg, рассматриваемые в дальнейшем, соответствуют принятой в настоящее время стандартной скорости изменения температуры 1—3 К/мин в квазистатических условиях эксперимента (дилатометрия, калориметрия и т. п.) [55, 56, 59]. [c.79]

    Процесс стеклования полимеров не всегда сопровождается резким изменением энергии активации диффузии, в частности не обнаружено изменения аргона в полиэтилметакрилате и поливинилхлориде, в то время как для полиметилакрилата и поливинилацетата наблюдалось уменьшение величины аргона примерно на одну треть [12]. [c.87]

    Температура стеклования полимеров зависит также и от напряжения, понижаясь с увеличением напряжения (рис. 210). Это можно объяснить уменьшением энергии активации молекулярных перегруппировок под влиянием напряжения. [c.584]

    Кроме того найдена линейная зависимость между энергией активации и температурами стеклования (размягчения) и установлена аналогичная взаимосвязь между коксуемостью и температурой размягчения (стеклования) [4]. [c.110]

    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]


    Таким образом, процессы стеклования и размягчения имеют типично кинетические отличия. Процесс стеклования проще в том отношении, что структура полимера в структурно-жидком состоянии является практически однозначной функцией температуры и давления, но сложнее тем, что энергия активации и время релаксации — нелинейные функции температуры и давления Процесс размягчения сложнее в том отношении, что структура стекла, полученного из одного и того же вещества, может быть самая различная в зависимости от тепловой предыстории , но проще тем, что энергия активации стеклообразного состояния выражается простой линейной зависимостью от температуры и давления. [c.95]

    Зависимость между температурой размягчения и скоростью нагревания более проста, чем зависимость между температурой стеклования и скоростью охлаждения. Это объясняется тем, что в стеклообразном состоянии энергия активации почти точно выражается формулой (2.2). Нулевая энергия активации зависит от природы и структуры стекла и имеет смысл энергии активации вблизи абсолютного нуля, изменяясь от вещества к веществу примерно так же, как и температура структурного размягчения (см. рис. 2.8). [c.48]

    ПММА 120° С) проходит через максимум. Наличие этого максимума, находящегося в температурном интервале стеклования, показывает, что термическое разрушение остаточной поляризации, образовавшейся в ПММА, непосредственно связано с сегментальной формой теплового движения в полимере [65]. Известно, что в том же температурном интервале (рис. 7.14) находятся и максимумы диэлектрических и механических потерь ПММА (а-процессы). Они также связываются с сегментальной подвижностью в полимере, проявляющейся в условиях действия переменных механических и электрических полей. Расхождение в значениях энергий активации для процесса а-релаксации в ПММА, полученных методом термодеполяризации и методом диэлектрических потерь, могут быть объяснены спецификой обоих методов и особенностями молекулярного движения в полимере при температурах выше и ниже 7 с. Из данных рис. 7.15 видно, что разные физические методы позволяют фиксировать проявление одних и тех же процессов молекулярной подвижности в полимерах в различных температурно-частотных диапазонах, т. е. дают взаимодополняющую информацию. [c.199]

    Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. [c.235]

    Как известно [7], эластомеры характеризуются двумя основными релаксационными механизмами. Один из них, а-процесс (рис. 12.6), связан с молекулярной подвижностью свободных сегментов и цепей, не входящих в микроблоки надмолекулярных структур. Он ответствен за релаксационные процессы в переходной области от стеклообразного к высокоэластическому состоянию и за быструю высокоэластическую деформацию выше температуры стеклования. Другой механизм относится к Я--процессам (>,1, 2 и Хз), наблюдаемым на высокоэластическом плато и ответственным за медленную высокоэластическую деформацию. Эти релаксационные механизмы объясняются термофлуктуационной природой различных типов микроблоков (упорядоченных микрообластей) в эластомерах. Процессы Я-релаксации характеризуются различными временами релаксации с одной и той же энергией активации. В сшитых эластомерах кроме а- и Я-процессов при высоких температурах наблюдается химическая релаксация (6-процесс), а в полярных эластоме- [c.341]

    Следует ожидать, что инвариантность энергии активации будег наблюдаться в тех опытах, длительность которых находится в интервале времен, где практически реализуются 1-процессы, т. е. в области высокоэластического плато, которое располагается выше те,мпературы стеклования и ниже температуры текучести (для несшитого) или температуры химической релаксации (для сшитого эластомера). С другой стороны, известно, что степенной закон долговечности справедлив примерно в том же температурном интервале. [c.346]


    Таким образом, анализ данных, полученных при исследовании температурно-временных зависимостей комплекса важнейших механических характеристик сшитых и несшитых эластомеров, таких, как релаксация напряжения, вязкое течение, процессы разрушения (долговечность и разрывное напряжение), приводит к выводу, что выше температуры стеклования Тс и ниже температуры пластичности Тп температурная зависимость релаксационных процессов и разрушения характеризуется одним и тем же значением энергии активации, но различным для различных эластомеров. Эта же энергия активации характерна и для Я-процессов релаксации в эластомере, наблюдаемых на спектрах времен релаксации. Из этого следует, что механизмы релаксационных процессов и разрушения неполярных эластомеров определяются перестройкой и разрушением надмолекулярных структур — микроблоков. Различие между про- [c.347]

    Вязкость полимеров сильно зависит от температуры. Для обла- сти высоких температур, далеких от температуры стеклования полимера, выполняется экспоненциальная зависимость вязкости от температуры, характеризуемая энергией активации вязкого течения. [c.154]

    Нулевой член энергии активации пропорционален температуре стеклования [c.79]

    При обсуждении термомеханического метода и затем ТВЭ мы все время подчеркивали роль действующей силы Р и деформации 8. Например, ясно, что при сжатии из тела выжимается свободный объем и его податливость уменьшается так же, как при понижении температуры. При растяжении, как уже упоминалось (подробно эти вопросы рассматриваются в гл. XVI), происходит ориентация, и она сама по себе уже может вызвать релаксационный ориентационное стеклование, во многом похожее на образование мезофазы) или даже фазовый ориентационная кристаллизация) переход. Соответственно, наряду с ТВЭ должен проявляться в некотором интервале деформаций и принцип деформационно-временной эквивалентности. Наконец, поскольку напряжение понижает энергию активации деформа-178 [c.178]

    Из зависимости двойного лучепреломления ПММА от температуры вытяжки определена энергия активации стеклования порядка 20,9 кДж/моль. Такое же значение энергии активации (23кДж/моль) 1 аидено из температурной зависимости модуля упругости [240, 243], что соответствует молекулярной когезии группы СООСНз [c.135]

    В работах Ю. С. Лазуркина было показано, что в интерьале между температурами стеклования и хрупкости (т. е. ниже температуры стеклования) полимеры под действием больших внешних сил могут подвергаться значительным деформациям без разрушения. Такие деформации коренным образом отличаются от обычной пластической деформации, так как исчезают при нагревании разгруженного образца. Это явление получило название вынужденной эластичности. Оно обусловлено высокоэластической деформацией полимера, вызываемой действием больших внешних сйл при температуре ниже температуры стеклования, так как в этих условиях снижается энергия активации молекулярных перегруппировок, [c.587]

    В многокомпонентных активных средах обнаружен эффект зависимости выхода продуктов жидкофазных реакций термоконденсации от энергии активации вязкого течения и температуры стеклования исходной системы. Описаны кинетические явления, связанные с отклонениями от закона действующих масс, вследствие непрерывного изменения состояния системы. Показан общий характер релаксационных про1 ессов различных по природе систем в газофазных реакциях пиролиза. [c.58]

    Неупорядоченность, присущая аморфным полимерам, является причиной появления структурных дырок , неподвижных при температуре, меньшей температуры стеклования, и подвижных при более высокой температуре. Поэтому выше температуры стеклования дырки играют роль центров движения, поскольку все свободное пространство необходимо для сегментальной диффузии (лежащей в основе течения). Иначе говоря, полимерные сегменты перепрыгивают в дырки (оставляя позади новые) в процессах диффузии и те-, чения. Скорость этих сегментальных процессов увеличивается с ростом температуры и уменьшается с увеличением энергии межсег-ментального (межмолекулярного) взаимодействия, обычно выражаемыми через энергию активации вязкого течения. Кинетическая теория жидкостей Эйринга [43] основана именно на этой молекулярной модели. Впервые она была сформулирована применительно к течению мономеров, при этом в ней предполагалось, что размеры дырок соизмеримы с размерами молекул, а не сегментов. [c.67]

    Процесс стеклования обусловлен изменением сегментальной подвижности цепей в неупорядоченной части полимера. Следующее из принципа температурно-временной зависимости уравнение Вильямса — Лаидела — Ферри [38, с. 251] относится к процессу а-релаксации и учитывает температурную зависимость энергии активации (см. гл. П и V). Процессу а-релаксации соответствует самый высокий максимум потерь (см. рис. 1.19). [c.63]

    Это соотношение, впервые предложенное Бартеневым [40, с. 21], служит математическим определением температуры стеклования, где д — абсолютное значение скорости охлаждения С — постоянная, равная, по Волькенштейну и Птицыну, кТ 1ё (Тс) Тс) энергия активации при температуре стеклования. Постоянная С примерно равна 20 °С для неорганических и 10 °С для органических стекол. Читатель без особого труда разберется в физическом смысле константы С, обратившись к критерию Тернбулла — Коэна и соотношениям термокинетики. Если скорость нагревания хи) та же, что и скорость охлаждения, т. е. ни = д, то температура размягчения Гр равна Гс и границы областей стеклования и размягчения совпадают. [c.86]

    В работах многих иностранных исследователей структурное стеклование рассматривается, тем не менее, как фазовый переход второго рода. Такой прямолинейный подход в силу изложенного следует признать неверным. Однако необходимо обратить внимание на работы Гиббса и ДиМарцио , которые считали, что Гс некоторым образом связана с истинным равновесным переходом второго рода при температуре Го, лежащей ниже Гс на 51,6 С [в соответствии с формулой 01-2) при Го энергия активации становится бесконечно большой, как предполагается, вследствие исчезновения свободного объема]. В этих работах под Гс понимается стандартная ( релаксационная ) температура стеклования т7 (см. ниже). При больших скоростях охлаждения Гс>Г", т. е. возрастает, а не снижается в соответствии с природой фазовых переходов. Поэтому в подходе Гиббса и ДиМарцио остается много невыясненного. [c.90]

    Между температурой стеклования (размягчения) и энергией активации существует однозначная связь. Действительно, чем больше силы взаимодействия, тем более прочно закреплены на своих местах кинетические единицы, тем менее вероятны их переходы от одного равновесного положения в другое и тем больше. время релаксации, При заданном режиме охлаждения (нагревания) температурам стеклования (размягчения) различных полимеров соответствует одно и то же время релаксации т = onst. [c.92]

    Тогда, согласно формуле (П. 1), получим, что отношение S JkT (или S JkTp) должно быть постоянной величиной для всех веществ. Следовательно, веществам с высокой температурой стеклования должна соответствовать большая энергия активации. Учитывая, что время релаксации при ТГ и Г" равно 10 с и что то = Ю с, из формулы (П. 1) получим — или < а = СТ", где С = =270 Дж/(моль-°( ). Эта постоянная не зависит от природы стекла, поскольку принято условие, что время т при ГГ или Г имеет одно и то же значение 10 с для всех веществ. Полученный результат приводит к соотношению = а/ Г" 32, справедливому для всех веществ. Следовательно, стандартная температура стеклования (размягчения) есть та температура, при которой [c.92]

    Исследование диэлектрических свойств полимеров — один из наиболее эффективных способов установления особенностей их строения. Диэлектрический метод оказывается пригодным как для полярных, так и неполярных полимеров (полиэтилен, полистирол, политетрафторэтилен и т. д.), поскольку полимеров, абсолютно лишенных полярных групп, практически не существует. В соответствии с корреляциями, рассмотренными в гл. I и И, для всех полимеров установлено два типа диэлектрических потерь ди-польно-сегментальные, связанные с подвижностью звеньев или большой совокупности их (кинетических сегментов) в электрическом поле, и дипольно-групповые, обусловленные движением, например, боковых полярных групп. Если в боковой цепи полимера содержатся полярные группы, способные ориентироваться в электрическом поле независимо друг от друга и имеющие разные времена релаксации, то наблюдается сложный пик дипольно-групповых потерь. Сегментальное движение в полимерах при температурах выше температуры стеклования кооперативно, так как подвижности сегментов данной цепи и сегментов соседних макромолекул взаимосвязаны. По этой причине в процесс ориентации вовлекаются области довольно больших размеров, чем и объясняются высокие значения кажущейся энергии активации сегментального движения. Ниже температуры стеклования Тс переход сегмента из одного равновесного положения в другое требует практически беС конечно большого времени, превышающего доступную продолжительность наблюдения. [c.243]

    Из рассмотренной кинетической теории стеклования следует согласующийся с экспериментальными данными вывод, что время релаксации обратно пропорционально скорости охлаждения вещества. Иначе можно сказать, что при температуре стеклования Тс произведение тш = onst (формула Б а р т е н е в а). Так как константа здесь равна kT lU (U — энергия активации при Тс), данное соотношение служит математическим определением температуры стеклования. Если скорость нагревания w+ = dTldt та же самая, что и скорость охлаждения, т. е. w- = q, то температура размягчения Тс = Тс и границы областей стеклования и размягчения совпадают. [c.40]

    В процессе диффузии происходит перемещение частиц газа в полимере, а в процессе теплового движения — са-модиффузионное перемещение звеньев цепи полимера. В обоих случаях перемещение частиц связано с преодолением энергетических барьеров. Чем сильнее межмолекулярные связи, тем больше энергетический барьер, тем выше энергия активации диффузии или самодиффузии. Следовательно, более сильным межмолекулярным связям в полимере должны соответствовать меньшие значения газопроницаемости и более высокие температуры стеклования. [c.78]

    Было показаночто энергия активации диффузии для эластомеров возрастает пропорционально температурам стеклования Т полимеров. [c.78]

    Аналогичное уравнение было получено и в работе . Рассматривая зависимость газопроницаемости от молекулярной массы полимера, можно, по аналогии с температурой стеклования, предполагать, что в области высоких значений молекулярной массы, газопроницаемость не будет зависеть от молекулярной массы, так как область зоны активации при элементарном акте диффузии, или иначе размеры кинетического сегмента, значительно меньше длины молекулы полимера. Действител ьно, на примере пленок, изготовленных на основе фракционированного ацетата целлюлозы, было показано что изменение молекулярной массы ацетата целлюлозы в пределах 17 500—52 500 не сказывается на значении водородопроницаемости. В дальнейшем независимость коэффициентов газопроницаемости полимеров от молекулярной массы была подтверждена результатами испытаний пленок из фракций полистирола (9500—110 000) и полиизобутилена (35 000—274 000) . В последующем было отмечено что газопроницаемость высокополимеров, а также соответствующие энергии активации процесса проницаемости не зависят от молекулярной массы полимера. Так, Хейс и Парк установили, что при диффузии бензола в каучук, молекулярная масса которого изменяется в пределах 3,5-10 — 3,3 10 коэффициент диффузии сохраняет постоянное значение. [c.84]

    Если в области температур Т <. Тс условная энергия активации Ец составляет приблизительно 6— 12 ккал/моль, то для температур Г > Гс значение Ео в отдельных случаях может повыситься до 40 ккал/моль. Значения фактора Do при температурах ниже Гс колеблются в пределах 10 —10 см /с, а выше Га они достигают 10 5 см /с . В табл. 13 приведены значения Dfl и Ео, вычисленные по данным рис. 26, для диффузии в полистироле при температурах выше и нил<е телтера-туры стеклования Величины Do при температуре ниже Гс близки к теоретическому значению, получаемому по теории Френкеля  [c.119]

    Особое внимание механизмам переноса в области температуры стеклования было уделено в работе Фриша и Poджe p a 2. Полученные данные интерпретированы с точки зрения теории свободного объема и энергии активации переноса. [c.122]

    Уже само название раздела должно вызвать удивление читателя. Ведь выше мы рассматривали стеклование как релаксационный переход, и поэтому теория этого перехода, казалось бы, должна быть релаксационной, а никак не термодинамической и основываться на уравнении Больцмана — Аррениуса, разумеется, с учетом кооперативности переходов отдельных релаксаторов, нелинейной зависимости энергии активации от температуры и т. д. Теории именно такого типа мы рассмотрим в разделе VIII. 4. Однако экспериментальное исследование зависимости времен релаксации от температуры показало столь резкую зависимость эффективной энергии активации а-перехо-да от температуры (рис. VIII. 7), что потребовалось предположение при приближении к некоторой температуре То она неограниченно возрастает, а это типично никак не для релаксационного, а для настояш,его фазового перехода второго рода. [c.185]


Смотреть страницы где упоминается термин Энергия активации стеклования: [c.250]    [c.268]    [c.62]    [c.84]    [c.85]    [c.91]    [c.249]    [c.41]    [c.131]    [c.189]    [c.150]    [c.433]    [c.370]    [c.185]    [c.247]   
Физическая химия наполненных полимеров (1977) -- [ c.250 ]

Пластификация поливинилхлорида (1975) -- [ c.233 , c.234 ]




ПОИСК





Смотрите так же термины и статьи:

Энергия активации



© 2024 chem21.info Реклама на сайте