Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Другие структурные особенности полимеров

    Пространственные полимеры отличаются от линейных и разветвленных тем, 410 онп пе являются совокупностью макромолекул, а основные цепи в mix соединены друг с другом атомами или группами атомов. Пространственные полимеры можно представить как единую систему атомов, соединенных между собой ковалентными связями. Эта структурная особенность обусловливает ряд характерных свойств пространственных полимеров. [c.376]


    Неясным остается и вопрос о соотношении вязкости разбавленных и концентрированных растворов полимеров. Известно, что чем лучше растворитель, тем больше характеристическая вязкость и меньше наклон прямой зависимости приведенной вязкости от концентрации (рис. 2). Но если это так, то эти прямые должны пересекаться и при больших концентрациях полимера вязкость раствора должна быть тем больше, чем хуже в термодинамическом смысле растворитель. Это подтверждается опытом, особенно для растворов жесткоцепных полимеров в. Следовательно, принципиально нельзя переносить закономерности разбавленных растворов на концентрированные. Для последних должны быть найдены теоретические соотношения между вязкостью, оптическими и другими свойствами, гибкостью цепи, молекулярным весом с учетом структурных особенностей растворов при разных концентрациях полимера. [c.86]

    Другие структурные особенности полимеров 47 [c.47]

    ДРУГИЕ СТРУКТУРНЫЕ ОСОБЕННОСТИ ПОЛИМЕРОВ [c.47]

    С другой стороны, реакции деструкции, связанные с превращениями заместителей, имеют мало общего, так как их характер и направление зависят только от химической природы боковых функциональных групп, находящихся в полимерной цепи. Эти реакции могут осуществляться в данной системе лишь в том случае, если они инициируются при температурах, более низких, чем температура, при которой расщепляется основная цепь полимера. Таким образом, реакции деструкции, связанные с превращениями заместителей, обычно протекают при относительно низких температурах. Термическая деполимеризация редко происходит при температурах ниже 200°, даже если структурные особенности полимера благоприятствуют ее протеканию. Реакции деструкции, связанные с превращениями заместителей, часто протекают очень быстро при этой температуре, если они вообще имеют место. [c.64]

    Хотя левая спираль, по существу, менее стабильна, чем правая, другие структурные особенности белковых молекул могут благоприятствовать образованию некоторой доли левых спиралей. (Было показано, что полимер Р-бензил-1-аспартата образует вместо правых спиралей левые .) [c.147]

    Лиственная древесина в отличие от хвойной содержит повышенное количество 4-О-метилглюкуроноксилана. В ее составе найдены глюкоманнан, галактоманнан и другие полисахариды (табл. 2.5). Для ксиланов этих растений характерны некоторые структурные особенности, Обшим для подобных полисахаридов, содержащихся в разнообразных лиственных древесных растениях, является единая схема построения макромолекул в целом. Их наиболее длинная цепь сформирована из остатков О-ксилопираноз, соединенных углеродными атомами связью р-(1—>-4). Молекулы полимеров разветвлены. Боковые цепочки образуют остатки Л-глю-куроновой кислоты и ее 4-О-метильного производного, как иравило, присоединенные к С-2 ксилозных остатков, и остатки Л-ксилозы, связанные с С-2 или С-3 поликсилозидной цепи. Ксиланы, выделенные из разных древесных растений, различаются соотношением остатков ксилозы и глюкуроновой кислоты, степенью ветвления и характером взаимного расположения остатков ксилозы и глюкуроновой кислоты. Остатки ксилозы в полимере во многих случаях ацетилированы [135]. Степень регулярности построения звеньев ксиланов изучена недостаточно, и нет работ, доказывающих ее вероятность. [c.89]


    Основная специфика адгезионных соединений при подходе к ним с позиций кинетической концепции прочности должна, по-видимому, учитываться параметром [25]. Однако этот параметр применительно к адгезионным соединениям и композитам оказывается наиболее условным и сложным [25]. Это обусловлено, с одной стороны, спецификой структуры компонентов адгезионных соединений, а с другой, — физическим смыслом, придаваемым этому параметру. Параметр будучи структурно-чувствительной характеристикой, зависит не только от структурных особенностей полимера и подложки, но и от структурных свойств граничных слоев в зоне контакта компонентов. С другой стороны, параметр по своему смыслу является произведением коэффициента перенапряжения на активационный объем [3]. Коэффициент перенапряжения для адгезионного соединения — величина условная, так как она изменяется скачками при переходе от одного компонента к другому [25]. Активационные объемы также должны сильно различаться для компонентов соединения [25]. Придавая параметру в формуле (4.4) интегральное значение, необходимо помнить, что это грубое упрощение, [c.183]

    Связь между строением и свойствами полиуретановых эластомеров. Вообще специфической структурной особенностью полимера, сообщающей ему каучукоподобные свойства, является наличие длинных цепей. Обычно эти цепные молекулы свернуты, но, изменяя их конформацию, можно создавать большие деформации. Однако система должна обладать, во-первых, достаточной внутренней подвижностью, чтобы сделать возможным подобные перегруппировки, и, во-вторых, редко расположенными узлами сетки, чтобы происходила в основном эластическая деформация, а не пластическое течение [53]. Было высказано предположение [54], что в материале с высоким сопротивлением раздиру поперечные связи должны быть расположены регулярно и разделены полимерными блоками с молекулярным весом 20000— 30 000. Такая структура легко реализуется в полиуретанах на основе линейных полиэфиров, где сшивание вначале происходит только по концам исходных блоков. Места узлов сетки в полимере на основе разветвленного полиэфира, наоборот, расположены слишком близко друг к другу, что приводит к менее желательным свойствам продукта. [c.116]

    Несмотря на то что различия в микротактичности полимерных цепей проявляются при изучении очень многих как физико-химических, так и химических свойств полимера, в большинстве случаев методы определения структуры, основанные на такого рода измерениях, не являются абсолютными и однозначными, а нуждаются в специальной калибровке. Кроме того, различия в свойствах полимеров как в жидкой, так и в твердой фазе могут быть связаны не только с обш,им содержанием изо- и синдио-звеньев в образцах, но и с их другими структурными особенностями, например с распределением конфигураций асимметрических атомов в макромолекулах, с числом звеньев голова — голова или хвост — хвост , разветвленностью макромолекул, молекулярными весами, распределением полимера по молекулярным весам и т. д. [c.31]

    Таким образом И. Г. Борщов отчетливо представлял себе связь пластичности и эластичности со структурными особенностями полимеров и в частности с наличием двух родов связей, резко отличающихся по своим энергиям друг от друга. [c.37]

    Полимеры имеют характерные особенности, резко отличающие их от низкомолекулярных соединений. Полимеры существуют только в конденсированных состояниях. У них возможны только два агрегатных состояния - твердое и жидкое - и два фазовых состояния - кристаллическое и аморфное. Газообразное состояние из-за высокой энергии когезии, как уже отмечалось выше (см. 5.2), у полимеров не существует. Образование кристаллической структуры у полимеров не сопровождается возникновением поверхности раздела между фазами (за исключением монокристаллов), так как макромолекулы обычно переходят из одной фазы в другую. В таком полимере, следовательно, нет отдельной кристаллической фазы в термодинамическом понимании. В целях устранения возможных противоречий для полимеров часто вместо термина фаза в структурном понимании используют термины кристаллические и аморфные участки (части, области). [c.133]

    Известно, что свойства любого твердого тела определяются строением и взаимным расположением образующих его молекул. В течение ряда лет считали, что все физические свойства полимерных тел полностью определяются строением макромолекул (молекулярной массой, гибкостью цепей). Большая заслуга в объяснении механических свойств полимеров на структурной основе принадлежит советским ученым и в первую очередь академику В. А. Каргину, который установил, что одной из важнейших особенностей полимеров является многообразие их надмолекулярных структур. Если термин строение полимеров характеризует общие черты молекулярной упорядоченности (определенным образом расположенных друг относительно друга макромолекул), то термин структура полимеров характеризует более детальные отличия молекулярной упорядоченности в полимерах. [c.18]


    Понятие о кинетически стабильных элементах структуры в полимерах не имеет строгого количественного критерия, но чем больше т при прочих равных условиях, тем больше кинетическая стабильность данного элемента структуры. Практически же под кинетически стабильными понимаются те флуктуационные структурные элементы, время жизни которых превышает длительность исследуемого процесса. К образованию флуктуационных структур, характеризуемых большей или меньшей кинетической стабильностью, способны все гибкоцепные полимеры, в том числе эластомеры. С точки зрения структурных особенностей эластомеров их можно считать высокомолекулярными жидкостями с более сложной структурой, чем простые жидкости. Эластомеры находятся в жидком агрегатном состоянии, но отличаются очень высокой вязкостью, поэтому их можно назвать полимерными высоковязкими жидкостями. С другой стороны, эластомеры из-за их высокой вязкости при недлительных нагружениях по своим механическим свойствам подобны упругим твердым телам. К твердым телам относятся как кристаллические, так и аморфные тела (стекла). Жидкости характеризуются непрерывно изменяющейся структурой, которая зависит от температуры Т и давления р. Для твердых же тел характерна неизменность структуры в области существования твердого состояния с данным типом структуры. Таким образо , твердое состояние ве-и ества отличается от жидкого не только структурой, но и ее постоянством при изменении внешних условий. При этом для кристаллов характерны наличие дальнего порядка и термодинамическая стабильность, а для стекол — наличие ближнего порядка и кинетическая стабильность (время жизни структурных элементов в стекле обычно существенно выше времени наблюдения). [c.25]

    В основе ценных, а порой уникальных свойств полимеров лежат физико-химические особенности их строения. Структура полимеров достаточно стабильна благодаря относительной прочности связей между звеньями внутри цепи. Внутренние участки цепи как бы экранированы, защищены от внешних агрессивных химических воздействий. Вместе с тем отдельные цепи в структурах полимеров способны довольно плавно и обратимо смещаться относительно друг друга, изменять свои размеры за счет перехода от спиралевидной конфигурации к линейной, и наоборот. Благодаря этому при больших механических нагрузках структура полимеров не разрушается, а лишь несколько видоизменяется, сохраняя способность более или менее полно возвращаться к исходной после снятия нагрузки. Эти структурные особенности придают полимерным материалам ценные свойства высокую эластичность, способность к обратимым упругим деформациям — растяжению, изгибу, скручиванию. Другое ценное их качество — пластичность, способность принимать любую форму в процессе изготовления, что позволяет производить большинство изделий из полимеров простым и экономичным способом — отливкой и формовкой. [c.126]

    В полимерах структурными элементами являются либо отдельные макромолекулы, либо более мелкие образования (фрагменты), например, сегменты. Элементы макромолекул - звенья, сегменты и др., а также составляющие их атомы находятся в непрерывном движении, стремясь в макромолекуле занять наиболее энергетически выгодное равновесное положение, в результате образуют так называемую надмолекулярную структуру. Макромолекулы как структурный элемент полимера могут иметь разные длины цепи, пространственное расположение звеньев, форму отдельных составляющих и другие особенности. [c.11]

    Из приведенных данных следует, что коэффициенты диффузии газов в полимерах имеют значения порядка 10 — 10 см 1сек, а общее значение коэффициентов проницаемости изменяется в широких пределах в зависимости от природы полимера. Внимательное изучение данных табл. 33 показывает, что газопроницаемость определяется теми же структурными особенностями полимеров, которые определяют механические, электрические и другие их свойства, — это гибкость цепи, фазовое и физическое состояние полимеров, плотность упаковки цепей. Из табл. 33 видно, что наибольщей проницаемостью обладают аморфные полимеры с очень гибкими цепями, находящиеся в высокоэластическом состоянии. Кристаллические полимеры (гуттаперча, полиэтилен) обладают значительно меньщей газопроницаемостью. Очень малой газопроницаемостью обладают высокомолекулярные стеклообразные полимеры, имеющие жесткие цепи. По мере уменьщения гибкости цепи газопроницаемость закономерно уменьщается. [c.496]

    Особенное внимание должно быть уделено к установлению химической однородности взятого для фракционирования полимера. Неоднородность состава и строения, как, например, различие в соотношениях компонентов в сополимерах, различие в степени замещения в полимер-аналогах, одновременное наличие разветвленных и линейных структур, регулярность (или отсутствие регулярности) в чередовании структурных единиц в сополимере и другие возможные особенности строения могут сильно исказить истинную картину МВР, определяемую методами фракционирования. [c.27]

    Возможность образования с помощью комплексных металлорганических катализаторов стереорегулярных полимеров, отличающихся необычным сочетанием технических свойств, вызвала во всем мире глубокий интерес к изучению закономерностей полимери-зационных процессов с этими катализаторами. Это, естественно, привело к развитию всестороннего исследования структурных особенностей и вызванных ими химических свойств различных металлорганических комплексов, позволивших их использовать не только в получении полимеров различных типов, но и в других областях органического синтеза. [c.5]

    Структурные особенности олефиновых полимеров. Катализируемая радикалами полимеризация олефинов и таких диоле-финов, как хлоропрен и изопрен, всегда приводит к симметричным цепным продуктам, в которых мономерные звенья соединены друг с другом в правильном порядке, головой к хвосту . Этот факт, многократно установленный при окислительной и гидролитической деградации, свидетельствует о том, что при полимеризации так же, как и при катализируемом перекисями присоединении к олефинам бромистого водорода (стр. 199), сульфитов (стр. 205) или тиолов (стр. 207), активный радикал всегда присоединяется к более электроотрицательному концу двойной связи С==С с тем, чтобы образовать свободный радикал с наи-меньщей возможной свободной энергией, т. е. [c.217]

    В книге изложены современные представления о структурных особенностях и механизме холодной вытяжки полимеров. Описаны закономерности процесса фибриллизации, сопровождающего холодную вытяжку полимеров. Особое внимание уделено влиянию жидких адсорбционно-активных сред на пластическую деформацию полимеров. Рассмотрены основные физико-механические, термомеханические, физико-химические и другие свойства полимеров, подвергнутых холодной вытяжке в адсорбционно-активных средах. Показаны перспективы практического использования полимеров, деформированных в адсорбционно-активных средах. [c.2]

    В каждой из этих групп имеются подгруппы или разновидности систем, различающиеся между собой теми или иными признаками. Но необходимо заметить, что среди этих разновидностей имеются такие, которые по отдельным свойствам или структурным особенностям могут быть отнесены к другой группе систем. Так, пластифицированные полимеры с неполным совмещением компонентов или с локальной кристаллизацией макромолекул проявляют свойства студней и, как будет показано ниже, могут рассматриваться в ряде случаев как студнеобразные системы. [c.33]

    Другой структурной особенностью, оказывающей важное влияние на свойства полимера, является содержание уис-конфигурации в 1,4-полибута-диенах. Натта получал полимеры с различным содержанием г/ыс-конфигура-ции и сравнивал свойства их ненаполненных вулканизатов [189]. Эти результаты приведены в табл. 1. Полимеры с весьма высоким содержанием цис-конфигурацпи обладают заметно улучшенными качествами с точки зрения упругих свойств и сопротивления разрыву. Путем изменения состава катализаторов можно также получать кристаллический полибутадиен с преобла- [c.202]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    Возникновение винилиденовых групп или внутренних двойных связей — прямое указание на существование побочных реакций (изомеризации и др.). Как показывают результаты исследования структуры полимеров, подобные явления почти не встречаются при полимеризации на хромокисных катализаторах, но имеют существенное значение для катализаторов Циглера. Это тем более интересно, что в первом случае применяются более жесткие условия реакции полиэтилен среднего давления часто получают при температуре порядка 150° (это позволяет удерживать полимер в растворе или в расплаве), т. е. на 70—80° выше, чем полиэтилен низкого давления. Следовательно, структурные особенности полимеров обусловлены различиями в механизме тех и других процессов, а не влиянием температуры. [c.436]

    Таким образом, поведение полимера при переработке определяется целым комплексом свойств, на основе которых выбираются параметры переработки. Эти свойства связаны с физическим состояние.м полимера — стеклообразным, высокоэласти-чески,м и вязкотекучим, В процессе переработки полимер последовательно на.чодится в каждом из них и поэтому знание закономерностей пере, ода из одного состояния в другое и структурных особенностей полимера необходимо для управления процессом переработки, [c.46]

    Образование из эпокисей каучукоподобных полимеров связано с раскрытием напряженных окисных циклов под влиянием каталитических агентов и соединением в линейные цепи. Структурной особенностью этих каучуков является присутствие в основной полимерной цепи простых эфирных групп, придающих линейной молекуле большую гибкость [4]. Этот эффект обусловлен, по-видимому, низким потенциалом барьера вращения по связи углерод — кислород. В то же время полярность эфирного кислорода и наличие в цепи внутренних диполей должны привести к усилению межмолекулярных взаимодействий и повышению плотности энергии молекулярной когезии [1, 5, 6]. В результате подвижность цепей и свойства полимеров будет определяться сложным сухммар-ным эффектом двух противоположно действующих факторов [1, 6]. Отсутствие ненасыщенных связей в основной цепи придает эпоксидным каучукам значительную стойкость к действию тепла, кислорода, озона и других агентов по сравнению с непредельными каучуками, полученными на основе диеновых мономеров. [c.574]

    Пространственное строение и другие свойства синтетических полимеров в растворе отвечают состоянию статистического клубка и описываются усредненными параметрами. Молекулярная поворотно-изомерная теория синтетических полимеров, являющаяся составной частью статистической физики, была разработана в 1950-е годы М.В. Волькенштей-иом [47] и позднее развита Т.М. Бирштейном и О.Б. Птицыным [48] и П. Флори [49]. Основы теории фазовых переходов полимеров были заложены в 1968 г. И.М. Лифшицем [50]. Хотя белки являются полимерами и их пространственное строение также определяется поворотной изомерией, теи не менее механизм структурной организации и особенности нативных конформаций белковых молекул не могут быть рассмотрены в рамках отмеченных теорий, базирующихся на равновесной термодинамике и конфигурационной статистике полимерных цепей. [c.101]

    Каждый моносахарид, входящий в состав полимерной молекулы, может находиться в пиранозной или фураноз-ной форме, а также может быть присоединен к любой из свободньгх гидроксильных групп следующего моносаха-ридного остатка а- или 3-гликозидной связью. Полисахариды различаются не только своим моносахаридным составом, но также молекулярной массой и структурными особенностями. Так, некоторые полисахариды—линейные полимеры, другие—сильно разветвлены. [c.181]

    Рис. i, взятый из работы Штаудингера в 1929 г., недостаточно точно характеризует явление аномальной вязкости растворов высокополимеров. Рейнер [89] н независимо от него Рабинович и Эйаеишитц [90] в 1933 г. показали, что аномальная (структурная) вязкость растворов высокополимеров всегда люжет быть выражена кривой, схематически изображенной иа рис. 2, где Р — напряжение сдвига iiV — скорость течения. При малых скоростях (от начала координат до точки а) вязкость растворов (характеризуемая отношением PIV) остается постоянной в дальнейшем она плавно понижается до точки Ь, выше которой снова оказывается постоянной. Положение точек а и Ь определяется особенностями полимера и растворителя, концентрацией, температурой. Такой характер кривой Рейнер объясняет наличием в растворах полимеров агрегатов (ассоциатов) цепеобразных молекул, иммобилизующих геометрически охваченный ими объем растворителя. При малых скоростях течения ассоциаты не разрушаются, при достаточно высоких — разрушаются полностью при средних скоростях разрушаемые ассоциаты успевают в процессе течения частично восстанавливаться, освобон дая лишь часть иммобилизованного ими растворителя. Некоторые авторы дают другое объяснение л)еханизма структурной вязкости. В частности, Пауэль и Эйринг [91] рассматривают аномалию вязкости с точки зрения современных иредставлений о внутреннем движении сегментов цепеобразной молекулы. Это движение происходит Свободно в расплавленном полимере, когда каждый сегмент окружен себе подобными, и тем менее свободно, чем более разбавлен раствор, т. е. чем оолее сегменты полимера окружены сольватирующими их малыми молекулами растворителя в очень сильно разбавленном растворе, при полной сольватации, движение сегментов вовсе не имеет места. Кинетической единицей в [c.179]

    Со структурными особенностями волокон и с методами регулирования структуры в процессе формования волокна связан ряд других свойств их, таких, как способность к накращиванию, равномерность свойств в поперечном срезе и вдоль нити, способность к сохранению извитости, приданной при обработке, и т. п. Но подробное рассмотрение этих вопросов отвлекло бы от основной проблемы, обсуждаемой в данном случае,— превращений, происходящих при переработке полимеров через растворы. [c.282]

    Таким образом, общепринятую картину молекулярного расположения в аморфных полимерах необходимо пересмотреть. С нашей точки зрения аморфные полимеры построены либо из свернутых цепей, образующих глобулы, либо из развернутых п епей, собранных в пачки. Особенности механических и других физических свойств полимеров, состоящих из пачек цепей, могут быть хорошо объяснены такой моделью вследствие неизбежной гибкости самих пачек, которая может иметь несколько различных структурных механизмов. Например, таким механизмом может быть разворачивание области пачки, внутри которой цепи свернуты в спирали, или согласованные повороты около С—С-связей одного участка пачки по отношению к другому. Этот вопрос, естественно, нуждается в дальнейшем структурном исследовании. Необходима также разработка статистической теории деформации эластичных полимеров, основанной иа этой модели. Следует заметить, что высказанные соображения об особенности строения алгорфных полимеров относятся не только к высокоэластическому и стеклообразному состояниям, но и к вязкотекучему состоянию. Действительно, как известно, низкомолекулярные жидкости, обладающие палочкообразными молекулами, содержат в себе пачки молекул каждая [c.108]

    Ориентация вызывает анизотропию свойств. Повторное растяжение вдоль оси ориентации может быть осуществлено при действии силы, большей первоначальной, так как прочность предварительно ориентированной пленки возрастает в 2—3 раза. Удлинения составляют 30—50% (рис. 5, а) и появляются только при температуре выше 15°. Растяжение пленки в перпендикулярном направлении возможно при снижении температуры вплоть до —65° (рис. 5, б). При этом прочность увеличивается приблизительно до 1000 кПсм . Таким образом, существенно расширяется интервал рабочих температур, ограниченный для изотропных пленок температурой стеклования —10°, —15°, а сама температура стеклования понижается до —65, —70°, т. е. до температуры, типичной и для других полимерных углеводородов с гибкими цепями. Температура стеклования полипропилена, вероятно, обусловлена его структурными особенностями. Сейчас мы знаем, что кристаллические полимеры не являются просто системой беспорядочно перепутанных цепей с отдельными областями кристаллической упорядоченности, но образуют последовательный ряд более сложных структур соединение в пачки, затем в плоские ленты, образующие сферолиты, и, наконец, в единичные кристаллы микроскопических размеров [4]. Возможно, что величина температуры стеклования кристаллического полипропилена связана именно с возникновением упорядоченных вторичных структур, а ее резкое понижение при [c.135]

    По мере усовершенствования методов хроматографической сорбции возрос интерес к селективным ионитам. Особенностью последних является способность вступать в химическую реакцию избирательно только с каким-либо одним ионом, присутствующим в сложной смеси органических или неорганических веществ. Это обусловлено структурными особенностями такого рода ионитов, наличием специфических функциональных групп, характерных, например, для этилендиаминтетрауксусной, антраниловой и других кислот, а также их пространственным расположением в молекулярной сетке полимера. Примером могут служить сополимеры стирола с дивинилбензолом, содержащие в бензольных ядрах или в боковых цепях сульфгидрильные (—ЗН) группы, или [c.242]

    По этим причинам в нашей лаборатории была осуществлена обширная программа исследования конструкционных пластмасс с целью охарактеризовать скорости РУТ как функцию условий нагружения. Выполнение подобной программы способствовало бы идентификации микромеханизмов разрушения и выяснению роли химической природы полимера и его морфологии [3—10]. Интересно отметить, что группа кристаллических полимеров (особенно найлон-6,6, полиформальдегид и поливини-лиденфторид) обладают большей способностью накапливать энергию при разрушении и имеет более высокие скорости РУТ, чем аморфные полимеры с низкой степенью кристалличности. После детального исследования поведения аморфных полимеров было решено изучить влияние структурных и морфологических факторов на РУТ в найлоне-6,6, полиформальдегиде и поливинилиденфториде. Настоящая статья дополняет предшествующие публикации по найлону-6,6. (Относительно других исследований кристаллических полимеров см. работы 1[3, 7— 12].) [c.493]

    Это не случайные выводы. По-видимому, существуют разные закономерности для жестко- и гибкоцепных полимеров. Очень вероятно, что зависимость механических свойств полимеров от качества растворителя экстремальная. Все это надо систематически изучать. Основной задачей является изучение взаимосвязи между природой растворителя, гибкостью цепи полимера ч его структурными особенностями, технологическими параметрами переработки и свойствами готовых изделий. Эта задача должна решаться совместно специалистами в области растгоров, структуры, механических и других свойств полимеров. [c.82]

    В предшествующих главах рассматривалась и обсуждалась полимеризация фторолефинов, которые наряду с некоторыми другими фтормо-номерами могут быть превращены в полимеры при давлениях в несколько тысяч атмосфер. Такие давления позволяют достичь необходимых скоростей полимеризации и получить нужные продукты. В общем для низкокипящих мономеров (например, тетрафторэтилена), которые легко полимеризуются в высокомолекулярные соединения, давление главным образом, увеличивает концентрацию мономера. С другой стороны, большое число винильных соединений, как фторированных, так и нефторирован-ных, не удалось заполимеризовать при низких давлениях. С точки зрения структурных особенностей многие из этих мономеров не могут быть полимеризованы обычными методами. Сверхвысокие давления (свыше 1000 атм) позволяют превращать эти мономеры в полезные полимерные материалы. В последние годы в этом направлении была начата большая работа. Для превращения перфторированных олефинов с более чем двумя атомами углерода, например гексафторпропилена и перфторгептена, в гомополимер высокого молекулярного веса необходимы давления свыше 1000 атм. [c.112]


Смотреть страницы где упоминается термин Другие структурные особенности полимеров: [c.491]    [c.24]    [c.560]    [c.123]    [c.386]    [c.426]    [c.478]    [c.426]    [c.491]    [c.150]    [c.552]    [c.119]    [c.119]   
Смотреть главы в:

Кристаллизация полимеров -> Другие структурные особенности полимеров




ПОИСК





Смотрите так же термины и статьи:

Структурные особенности



© 2025 chem21.info Реклама на сайте