Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аминокислоты анаболизм

    Стабильность белкового состава организма — следствие устойчивого динамического равновесия, при котором количество постоянно распадающихся белков практически равно синтезируемому их количеству. Поддержание этого равновесия между анаболизмом и катаболизмом — явление тонкое, так как организм располагает лишь очень малым резервом аминокислот. В организме человека соотношение свободных аминокислот и возобновимых белков составляет приблизительно 1 5000 [65]. [c.568]


    В организме синтез и распад белков тесно взаимосвязаны. Постоянство массы и белкового состава взрослого организма является результатом тонко настроенного равновесия между анаболизмом и катаболизмом. Аминокислоты белков пищи и аминокислоты, возникающие в результате распада белков тканей в процессе самообновления, составляют общий фонд аминокислот организма, равный приблизительно 500 г. [c.167]

    Основная часть аминокислот используется в процессах биосинтеза белка и других азотсодержащих веществ. Те аминокислоты, которые не были использованы в реакциях анаболизма (около 100 г в сутки), распадаются в организме до конечных продуктов. Примерно такое же количество аминокислот должно попадать ежедневно в организм с пищей для сохранения азотистого равновесия. [c.167]

    Основное различие в реакциях путей катаболизма и анаболизма заключается в том, что они редко повторяют друг друга. Продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так происходит при синтезе многих аминокислот, например, при распаде ароматических аминокислот образуются ацетил-КоА и фумаровая или янтарная кислоты, тогда как для синтеза тех же аминокислот исходными продуктами служат фосфоенолпировиноградная кислота и эритро-зо-4-фосфат (см. подробнее тему 5 Пути биосинтеза протеиногенных аминокислот ). [c.451]

    АНАБОЛИЗМ м. Ферментативный синтез биополимеров из простых предшественников (напр., белков, аминокислот и т.п.). [c.28]

    ОБМЕН ВЕЩЕСТВ. Совокупность биохимических реакций, лежащих в основе жизнедеятельности организмов. Биологический обмен веществ представляет собой процессы превращения веществ внешней среды в вещества живого организма и обратные превращения веществ организма в вещества внешней среды. С другой стороны, это процессы, происходящие внутри организма, в отдельных частях, органах и тканях, и, наконец, процессы превращения веществ в клетке и в отдельных клеточных структурах. Без непрерывного взаимодействия организма с внешней средой, без обмена веществ не может быть жизни. Обмен веществ неразрывно связан с обменом энергии. Важнейшую сторону обмена веществ составляют биохимические процессы, и выяснение химизма отдельных звеньев обмена веществ является одним из путей познания жизни. Благодаря крупным успехам биохимии к настоящему времени в основном раскрыт химизм таких кардинальных звеньев обмена веществ, как дыхание и брожение, фотосинтез, обмен азотистых соединений, жиров, углеводов и органических кислот и многие другие процессы. Выяснено также влияние многих внешних и внутренних факторов на интенсивность и направленность отдельных звеньев обмена веществ, что позволяет путем изменения внешних условий изменять обмен веществ микроорганизмов, растений и животных в желаемом для человека направлении. Процессы обмена веществ делятся на две группы — катаболизм и анаболизм. Катаболизм — это процессы, при которых происходит распад, расщепление сложных органических соединений до белее простых (например, распад белков до аминокислот, крахмала до глюкозы, сахаров до углекислоты и воды т. д.). Анаболизм — это синтетические процессы, при которых образуются более сложные соединения из более простых. При катаболизме происходит выделение энергии, а при анаболизме ее поглощение. Всякое усиление синтетических процессов в организме неизбежно сопровождается усилением процессов распада веществ. [c.204]


    Процесс анаболизма, как и катаболизма, включает три стадии. Исходными веществами для него служат соединения, поставляемые третьей стадией катаболизма, т. е. третья стадия катаболизма — первая, исходная, стадия анаболизма. Так, например, синтез белка начинается с а-кетокислот, являющихся предшественниками а-аминокислот. На второй стадии анаболизма а-кетокислоты аминируются аминогруппой доноров с образованием а-аминокислот, а на третьей, заключительной, стадии аминокислоты объединяются в пептидные цепи. [c.96]

    В целом все химические процессы, происходящие при построении и деятельности тканей живого организма, называются метаболизмом или обменом веществ. Анаболизм — это процесс синтеза сложных молекул из простых, например образование белков клеток из аминокислот крови  [c.325]

    Анаболизм тоже состоит из трех стадий, причем соединения, образовавшиеся на третьей стадии катаболизма, являются исходными веществами в процессе анаболизма. Например, биосинтез белков начинается с а-кетокислот, получающихся на третьей стадии катаболизма на второй стадии а-кетокислоты превращаются в а-аминокислоты на третьей стадии анаболизма из а-аминокислот создаются пептидные цепи. Пути катаболизма и анаболизма в большинстве случаев неидентичны. [c.393]

    Белковый обмен характеризуется катаболизмом и анаболизмом. В процессе катаболизма бактерии разлагают белки под действием протеаз с образованием пептидов. Под действием пептидаз из пептидов образуются аминокислоты. [c.17]

    Аминокислоты незаменимые — кислоты, которые не синтезируются в тканях организма валин, гистидин, лейцин, изолейцин, лизин, метионин, треонин, фенилаланин. Анаболизм — см, ассимиляция. [c.486]

    Последовательное рассмотрение анаболических и катаболических путей белков и аминокислот целесообразно начать с первичного пути анаболизма данных соединений — процесса фиксации атмосферного азота. [c.361]

    Катехоламины — представители биогенных аминов, lie. аминов, образующихся в организме в результате процессов Анаболизма. Принципиальный путь биосинтеза катехоламинов, одя из незаменимой а-аминокислоты фенилаланина (см. 11.1), веден на рис. 9.1. К каФехоламинам относятся три последних представленных на рисунке соединений — дофамин, норадре-Яин и адреналин, выполняющие, как и ацетилхолии, роль ней- иедиаторов. Адреналин является гормоном мозгового ве-Й тва надпочечников, а норадреналин и дофамин — () предщественниками. [c.255]

    Это совершенно очевидно, когда продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так, при синтезе многих аминокислот, например при распаде ароматических аминокислот, образуются ацетил-КоА и фумаровая или янтарная кислоты, тогда как для синтеза тех же аминокислот исходными продуктами служат фосфоенолпи-ровиноградная кислота и альдотетрозофосфат. [c.446]

    Превращения веществ в клетке (обмен веществ, или метаболизм), в результате которых из сравнительно простых предшественников, например глюкозы, жирных кислот с длинной цепью или ароматических соединений, образуется новое клеточное вещество, можно ради простоты подразделить на три основные группы. Сначала питательные вещества расщепляются на небольшие фрагменты (распад, или катаболизм), а затем в ходе реакций промежуточного обмена, или амфиболизма, они превращаются в ряд органических кислот и фосфорных эфиров. Эти два пути переходят незаметно один в другой. Многообразные низкомолекулярные соединения-это тот субстрат, из которого синтезируются основные строительные блоки клетки. Строительными блоками мы называем аминокислоты, пуриновые и пиримидиновые основания, фос-форилированные сахара, органические кислоты и другие метаболиты — конечные продукты цепей биосинтеза, иногда длинных. Из них строятся полимерные макромолекулы (нуклеиновые кислоты, белки, резервные вещества, компоненты клеточной стенки и т.п.), из которых состоит клетка. Эти два этапа биосинтеза клеточных веществ-синтез строительных блоков и синтез полимеров-составляют синтетическую ветвь метаболизма, или анаболизм (рис. 7.1). [c.214]

    Образование ферментов, участвующих в процессах анаболизма, например в биосинтезе пиримидинов, пуринов и 20 аминокислот, регулируется путем репрессии. В большинстве случаев сигнал к остановке биосинтеза белков исходит от конечных продуктов этого процесса (репрессия конечным продуктом). Если в среде имеются одновременно два субстрата, то бактерия обычно предпочитает тот субстрат, который обеспечивает более быстрый рост. Синтез ферментов, расще-пляюпщх второй субстрат, репрессируется в этом случае говорят о катаболитной репрессии. [c.474]

    Очевидно, что обновление белков отражает совокупность процессов синтеза и распада до сих пор исследования процессов обновления не дали однозначного ответа на вопрос о том, могут ли аминокислоты включаться в белки при отсутствии реального синтеза de novo. Эти исследования мало чем обогатили наши познания о механизме процессов анаболизма и катаболизма белков. [c.275]


    Есть и еще одно важное различие оно заключается в том, что анаболиче-ские и катаболические пути очень редко повторяют друг друга в деталях. Это совершенно очевидно, когда продукт катаболизма не идентичен тому источнику углерода, который используется в процессе анаболизма. Так, в частности, обстоит дело при синтезе многих аминокислот. При распаде [c.273]

    Цикл лимонной кислоты (синоним цикл трикарбоновых кислот), часто связываемый с именем Кребса это, образно говоря, та главная ось, вокруг которой вертится метаболизм почти всех суш еству1ощих клеток. Естественно поэтому, что он займет центральное место и в нашем обсуждении. Значение этого цикла, первоначально постулированного для объяснения полного сгорания пирувата (и, таким образом, углеводов), а также дву- и трехуглеродных конечных продуктов окисления жирных кислот, вышло далеко за рамки этих и им подобных чисто катаболических функций, связанных с выработкой энергии. Цикл Кребса является фокусом , в котором сходятся все метаболические пути (см. гл. XI). Поэтому его реакции и субстраты играют решаюш,ую роль в биосинтезе (анаболизме) множества важных соединений, начиная от аминокислот, пуринов и пиримидинов и кончая жирными кислотами с длинной цепью и порфиринами. [c.348]

    Репрессия под действием конечных продуктов характерна для процессов биосинтеза (анаболизма) аминокислот, витаминов, пуринов и пиримидинов индукция же, как правило, имеет место при распаде (катаболизме) источников углерода и энергии Совершенно очевидно, что регуляция необходима для обеспечения экономичности работы белоксинтезирующей системы. Синтез ферментов любого метаболического пути включается или выключается в зависимости от того, сколь велика в данный момент потребность клетки в этом пути. Зачем синтезировать белки, если они не нужны Особенно ярким примером того, как с помощью индукции и репрессии обеспечивается строгий контроль над синтезом определенной группы белков, может служить регуляция образования ферментов, катализирующих распад миндальной кислоты (точнее ее солей — манделатов) у Pseudomonas. Ниже приведена предполагаемая последовательность реакций распада. [c.536]

    Совокупность всех химических реакций, протекающих в клетке, составляет то, что мы называем метаболизмом. Метаболизм подразделяется на анаболизм и катаболизм — два разных типа реакций, которые нередко протекают и в разных частях клетки. Катаболические реакции, или реакции распада, обьгано сопровождаются высвобождение энергии. По большей части это окисление и гидролиз. Анаболические реакции, или реакции синтеза, наоборот, требуют затрат энергии. Часто это реакции конденсации. Все эти реакции протекают с участием ферментов. Примером фермента, участвующего в анаболизме, может служить глутаминсинтетаза, катализирующая синтез аминокислоты глутамина из глутаминовой кислоты и аммиака  [c.152]

    В обмене белков участвуют чрезвычайно сложные молекулы их сложность заключается не только в том, что они построены приблизительно из двадцати разных аминокислот, но также и в том, что содержание этих аминокислот, а также последовательность их расположения в молекулах различны. Это приводит к образованию самых разнообразных белков. Все тканевые белки животных, принадлежащих к разным видам, а также белки разных органов и желез имеют специфическое строение и состав. Белки иного типа — это белки ферментов и гормонов, плазменные белки, белок гемоглобина, а также белки различных нуклеонротеидов. Проблема анаболизма, т. е. синтеза белков, необходимых для роста и развития организма, еще далека от разрешения. Процесс катаболизма, или расщепления белков, при котором осво- [c.378]

    Изучение молекулярных процессов, лежаш их в основе переноса наследственной информации, сопряжено со многими методологическими проблемами, которые обусловлены особенностями биосинтеза нуклеиновых кислот, протекающего только на готовой матрице матричный биосинтез). Кроме того, учитывая огромное биологическое значение процессов, протекающих с участием нуклеиновых кислот, многие авторы предпочитают рассматривать их в отдельных разделах курса биохимии. В рамках настоящего пособия процессы переноса генетической информации в живых организмах рассматриваются, исходя из следующих соображений. Прежде всего учитывается, что биосинтезы нуклеиновых кислот представляют собой анаболические процессы, которые целесообразно рассматривать наряду с процессами анаболизма и катаболизма биосоединений данного и других классов. Кроме того, в настоящей главе обсуждается метаболизм нуклеотидов как строительных блоков нуклеиновых кислот. Таким образом, исследование путей биосинтеза нуклеиновых кислот, начиная с нуклеотидов и заканчивая полинуклеотидными цепями, включая их трансформацию, позволяет уяснить взаимосвязь между разными биомолекулами, что, по сути, составляет материальную основу биологической эволюции. Информация, касающаяся общих вопросов биоэнергетики и метаболизма, необходимая для усвоения материала по метаболизму нуклеиновых кислот, дана в предыдущей главе. В следующей главе Обмен белков и аминокислот изложен биосинтез белков трансляция), который протекает на матрице РНК и отражает биологический принцип передачи наследственной информации по цепочке ДНК РНК белок. [c.343]

    Кажущееся постоянство химического состава живого организма поддерживается за счет равновесия между процессами синтеза и разрушения составляющих его компонентов, т. е. равновесия между катаболизмом и анаболизмом. В растущем организме такое равновесие смещено в сторону синтеза белков, т. е. анаболическая функция преобладает над катабо-лической. В организме взрослого человека в результате биосинтеза ежесуточно обновляется до 400 г белка. Разные белки обновляются с различной скоростью — от нескольких минут до 10 и более суток, атакой белок, как коллаген, практически не обновляется за все время жизни организма. В целом период полураспада всех белков в организме человека составляет около 80 сут. Из них необратимо распадается примерно четвертая часть протеиногенных аминокислот (около 100 г), которая должна возобнов- [c.360]


Смотреть страницы где упоминается термин Аминокислоты анаболизм: [c.207]    [c.383]    [c.383]    [c.385]    [c.389]    [c.601]    [c.138]    [c.152]    [c.49]    [c.427]    [c.49]    [c.284]   
Биологическая химия Изд.3 (1998) -- [ c.431 ]




ПОИСК





Смотрите так же термины и статьи:

Анаболизм



© 2025 chem21.info Реклама на сайте