Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты участие в синтезе белка

    Строение и свойства других важнейших биополимеров — нуклеиновых кислот—существенно отличны от строения и свойств белков. Это различие выражает принципиальную разницу биологических функций. Можно сказать, что функция белков— исполнительная, в то время как функция нуклеиновых кислот— законодательная, поскольку она сводится к участию в синтезе белка. В конечном счете главный молекулярный процесс, лежащий в основе всей биологии, — матричный синтез биополимеров, реализуемый в транскрипции и трансляции (а также в обратной транскрипции). Физические основы этих явлений описаны в книге. Однако мы ограничились рассмотрением простейших модельных процессов, реализуемых в бесклеточных системах, и не затрагивали процессы регуляции матричного синтеза, т. е. регуляции действия генов. Очевидно, что клеточная дифференцировка, морфогенез и онтогенез в целом не могли бы реализоваться без такой регуляции. В самом деле, в любой соматической клетке многоклеточного организма наличествует тот же геном, что и в исходной зиготе, но функции соматических клеток различны, так как в них синтезируются разные белки. Регуляция действия генов осуществляется на молекулярном уровне в системе оперона у прокариотов или транскриптона у эукариотов. Рассмотрение этих систем выходит за рамки книги. [c.610]


    Гуанин и аденин наряду с пиримидиновыми основаниями (стр. 319) принимают участие в построении нуклеиновых кислот, обусловливающих синтез специфических для данного организма видов белка и определяющих наследственные свойства организма. [c.329]

    СЫ с нуклеиновыми кислотами, принимают участие в химическом выражении генетической информации и в управлении генетической функцией. Другие белки, такие, как миоглобин, гемоглобин и цитохромы, являющиеся дыхательными белками, участвуют в биологическом транспорте и использовании кислорода. Антитела часто называют биологическим проявлением принципа тущения огня огнем , поскольку функцией этой интересной группы белков является защита организма от вторжения инородных белков. И наконец, ферменты — катализаторы биохимических реакций —также представляют собой белки. Из всего сказанного следует, что с биологической точки зрения первоначальный синтез белков был одним из самых значительных событий в истории Земли. [c.384]

    В нуклеиновых кислотах РНК и ДНК мононуклеотиды соединены между собой за счет остатков фосфорной кислоты. Нуклеиновые кислоты РНК и ДНК принимают участие в синтезе белка, передаче наследственных признаков и в других биохимических процессах. [c.234]

    Исключительную роль в жизнедеятельности животных и растительных организмов играют высокомолекулярные нуклеиновые кислоты, представляющие собой полиэфиры фосфорной кислоты и Ы-рибозидов. Нуклеиновые кислоты принимают участие в биохимическом синтезе белков. Дезоксирибонуклеиновые кислоты в комплексе с белками являются материальным носителем наследственности. [c.14]

    Формы жизни, возникшие на белковой основе , были неустойчивыми из-за отсутствия системы передачи информации, использующей свойства нуклеиновых кислот, а генная жизнь не могла прогрессивно эволюционировать без участия белков, обладающих каталитическими свойствами. Как произошло возникновение формы жизни, в основе которой лежат белки и нуклеиновые кислоты, пока не известно. Ясно только, что встреча обоих типов соединений положила начало пути эволюции, на котором произошло формирование механизмов синтеза белка и нуклеиновых кислот и кодовых взаимодействий между обоими механизмами. [c.202]


    Все процессы в синтезе белка с участием нуклеиновых кислот катализируются специальными ферментами. [c.560]

    Число примеров возможных, но пока неосуществленных каталитических реакций можно было бы увеличивать до бесконечности. То, что во многих, а может быть даже в большинстве случаев реакции, разрешенные термодинамически, в принципе поддаются реализации с помощью катализаторов, показывает биокатализ. В любой живой клетке происходят сотни и тысячи тончайших каталитических процессов, поражающих своей слаженностью и совершенством. При этом в клетке исключается использование основных методов форсирования химических реакций с помощью повышения температуры и давления или применения необычных растворителей. При комнатных и даже несколько более низких температурах в растениях совершается каталитический фотосинтез углеводородов и тесно с ним связанные термические каталитические синтезы всей остальной широчайшей гаммы веществ, требующихся для жизнедеятельности организма. Высшие растения, прекрасно ассимилирующие углерод из СО2, неспособны усваивать азот воздуха но существуют микроорганизмы (бактерии, грибки), которые осуществляют эти реакции без прямого участия энергии света. Продукты таких первичных каталитических синтезов у микроорганизмов далее также каталитическим путем превращаются в аминокислоты и азотные основания, из которых построены белки и нуклеиновые кислоты, а также различные другие азотные соединения живой клетки (алкалоиды и т. д.). Существуют бактерии, способные осуществлять каталитически весь комплекс биохимических процессов, в том числе синтез аминокислот,. [c.9]

    Свободные аминокислоты. Известно, что в процессе фотосинтеза образуются сложные вещества, относящиеся к углеводам, белкам и органическим кислотам. Однако свободные аминокислоты не могут принять участие в синтезе нуклеиновых кислот и белка, так как они биологически не активны. Для перевода их в активную форму нужен источник энергии (донатор энергии). Им является АТФ. [c.13]

    Передача информации при М. п. происходит благодаря тому, что матрица осуществляет структурно-химич. контроль над совокупностью элементарных актов роста дочерней цепи, причем контакт между матрицей и растущей цепью м. б. прямым (как при репликации ДНК или синтезе информационной РНК — см. Нуклеиновые кислоты) или через посредников (как в синтезе белка на информационной РНК с участием транспортной РНК). [c.74]

    Азотистый обмен в животном организме — это по преимуществу обмен белков. Однако не следует забывать, что в организме имеется ряд азотистых соединений, которые хотя и образуются из продуктов распада белка, ио совершенно отличны от них по своей химической природе и используются организмом для выполнения специальных функций. К таким азотистым веществам относятся, например, некоторые пигменты (гем, желчные пигменты), нуклеиновые кислоты, простетические группы некоторых ферментов (дегидрогеназ, цитохромов, оксидаз), азотсодержащие гормоны (тироксин, адреналин, холин). Синтез и распад этих соединений протекают путями, в большинстве случаев еще недостаточно выясненными. Ввиду активного участия этих соединений в обмене естественно, что даже временная блокировка путей их превращения приводит к извращению нормального обмена веществ, т. е. к патологии. [c.368]

    Мы полагаем, что важное различие должно существовать между типами молекул, образованных во время этих двух процессов. В период химической эволюции одним из основных механизмов образования больших молекул должен бы,п быть автокатализ. В системе автокатализа определенное вещество способствует больше всего своему образованию в больших количествах. В биологической эволюции принимают участие две различные системы молеку.п информационная система, основанная на нуклеиновых кислотах, и каталитическая система, основанная на белках. Первая направляет синтез второй. Важнейшая проблема, стоящая перед экспериментом, сводится к тому, чтобы отчетливо представить себе, откуда произошли эти две системы и как они связаны между собой. [c.215]

    Рассмотрим в качестве особенно яркого примера предполагаемый синтез аденина. Аденин — важное для жизни вещество из группы пуринов. Он входит в состав нуклеиновых кислот и принимает деятельное участие в синтезе белков и работе механизма, передающего наследственные признаки. Формула аденина кажется довольно сложной  [c.206]

    Согласно одной из гипотез, самые первые пептиды и белки возникли без участия нуклеиновых кислот, а ДНК (или РНК) образовалась лишь позднее, взяв на себя функцию регуляции синтеза пептидов и белков и ограждения его от всяких случайностей. [c.395]

    Важнейшие функции всего живого — синтез белков и передача наследственных признаков — тесно связаны между собой. Было установлено, что они осуществляются при участии определенных биологических полимеров — нуклеиновых кислот. [c.87]


    Роль нуклеиновых кислот в синтезе белка изучали многие исследователи, но, несмотря на большое количество экспериментов, она остается еще не выясненной. В ряде работ подчеркивалось, что синтез рибонуклеиновой кислоты и белка, как и включение аминокислот, связан с фракцией микросом [582, 637]. Исследование процессов включения в ядерных и безъядерных фрагментах ацетабулярии показало, что лишенные ядра фраг-ментб способны включать аминокислоты [641]. В общем данные, доказывающие участие дезоксирибонуклеиновой кислоты в синтезе белка, немногочисленны. Роль рибонуклеиновой кислоты не установлена, хотя высказан ряд предположений о том, что рибонуклеиновая кислота может участвовать каким-то образом [c.279]

    После того, как выяснилось значение РНК для синтеза белка, в 1950 г. Гауровицем была высказана новая гипотеза, которая учитывала участие в этом синтезе РНК. Он предполагал, что роль нуклеиновых кислот 11 синтезе белка состоит в том, чтобы поддерживать белковую матрицу в растянутом состоянии в виде пленки. Таким образом, по этой гипотезе, матрицей является сам белок, а роль нуклеиновой кислоты — вспомогательная она служит как бы каркасом, облегчающим раскрытие белков ойструктуры, на базе которой происходит специфическое расположение аминокислот в синтезируемой цепи. [c.77]

    Как вы помните, во время лелсння клетки и ее ядра ядрышко исчезает и, наоборот, оно наблюдается в ядре в период между делениями, когда клетка растет. Кроме того, было замечено, что в клетка.х, быстро и активно растущих, ядрышко всегда увеличено в размерах. Отсюда невольно напрашивалось предположение, чго ядрышко как-то участвует в росте клетки, в процессах создания тела клетки, то есть в синтезе веществ, нз которых клетки строят себя. Как вы знаете, тело клетки состоит в основном из белков. Накопление нх в протоплазме происходит главным образом в период между клеточными делениями, в го время когда в ядре есть ядрышко. Значит, ядрышко участвует в синтезе белков Да, это действительно так. Но, точнее, не само ядрышко, а содержащаяся в нем рибонуклеиновая кислота. К этому же выводу пришел Касиерссон, высказывавший гипотезу об участии нуклеиновой кислоты в синтезе белка. Сейчас уже есть довольно много наблюдений и экспериментов, подтверждающих эту гипотезу. Например, если взять быстрорастущую культуру дрожжевых клеток и провести химический анализ, то в ней обнаружится довольно большое содержание РНК. И, наоборот, в голодающей культуре дрожжей, где обмен веществ замедлен и клетки едва растут, количество РНК незначительно. Было замечено и другое интересное явление синтез белков в клетках происходит параллельно синтезу нуклеиновых кислот. Если на клетку подействовать ядами, которые нарушают в ней образование нуклеиновых кислот, то может прекратиться и создание новых белков. [c.175]

    Строение нуклеиновых кислот. Участие их в синтезе клеточных белков. Синтез белков лежит в основе построения новых клеточных структур. Организмы синтезируют свои собственные гбелки, отличающиеся от белков других видов характером чередования аминокислот. Первичная структура белков определяет многие их биохимические особенности. Изменение чередования аминокислот в молекулах ферментов в некоторых случаях приводит к потере свойств катализатора. Чем же определяется последовательность расположения аминокислот при синтезе белков Для ответа на этот вопрос была выдвинута теория матриц. Согласно этой теории, в клетках имеется нечто подобное типографским матрицам или штампам, каждый из которых штампует белок определенного вида или точнее белок со строго определенным порядком расположения аминокислот в его полипептидной цепи. Роль матриц выполняют нуклеиновые кислоты. Нуклеиновые кислоты имеются во всех без исключения клетках. Различают две группы нуклеиновых кислот—дезоксирибонуклеиновые кислоты (ДНК) и рибонуклеиновые кислоты (РНК). ДНК содержится главным образом в клеточном ядре, РНК — Э ядре и цитоплазме. [c.122]

    Спектры действия подавления синтеза ДНК, РНК и белка, включая индукцию ферментов, у микробов носят в основном нуклеиновый характер (рис. 54). Однако некоторые данные указывают на активное участие в этом процессе не только нуклеиновых кислот, но и белка. Например, в спектрах действия подавления макромолекулярных синтезов у М. radiodurans проявляется белковый компонент, а спектры действия инактивации синтеза полифенилаланина рибосомами in vitro имеют как нуклеиновый (260 нм), так и белковый (280 нм) максимумы. [c.288]

    Синтез полипептидов (белков) в ютетках живых организмов протекает значительно сложнее с участием нуклеиновых кислот. Этот процесс детально рассматривается в главе 14. [c.50]

    Необходимо отметить, что, помимо взаимных переходов между разными классами веществ в организме, доказано существование более сложных форм связи. В частности, интенсивность и направление любой химической реакции определяются ферментами, т.е. белками, которые оказывают непосредственное влияние на обмен липидов, углеводов и нуклеиновых кислот. В свою очередь синтез любого белка-фермента требует участия ДНК и всех 3 типов рибонуклеиновых кислот тРНК, мРНК и рРНК. Если к этому добавить влияние гормонов, а также продуктов распада какого-либо одного класса веществ (например, биогенных аминов) на обмен других классов органических веществ, то становятся понятными удивительная согласованность и координированность огромного разнообразия химических процессов, совершающихся в организме. Многие из этих процессов были подробно освещены при описании обмена отдельных классов веществ (см. главы 10-12). В данной главе кратко представлены примеры взаимных переходов отдельных структурных элементов белков, жиров, углеводов (рис. 15.1) и нуклеиновых кислот в процессе их превращений и обмена. [c.546]

    Строение и свойства клетки и организл1а в конечном счете диктуются нуклеиновыми кислотами (ДНК и РНК), обладающими законодательной властью в том смысле, что ими задается генетическая программа синтеза белков. В свою очередь белки обладают исполнительной властью уже потому, что ни одна химическая реакция в клетке не идет без участия специального фермента. [c.24]

    Синтетические процессы в клетках — синтез белков, нуклеиновых кислот, пуринов, пиримидинов, липидов, сахаров и др. представляют собой, как правило, эндергонические процессы, т.е. процессы, требующие затраты свободной энергии. Биосинтез осуществляется в открытой термодинамической системе— клетке в результате сопряжения с экзергоническими процессами гидролиза АТФ и окисления НАД-Н, НАДФ-Н и ферредоксина, в ходе которых освобождается энергия. Б конечном счете восстановленные коферменты также возникают за счет АТФ — наиболее универсального аккумулятора энергии (глюкоза фосфорилируется АТФ). Основные биосинтетические реакции идут с участием ферментов киназ или синтетаз. [c.108]

    Главной проблемой является синтез in vivo таких соединений, как белки и нуклеиновые кислоты со строго определенным строением. По этому вопросу имеется хороший обзор Шпигельмана [1928]. Теория матрицы , которой он придерживается, открывает широкие возможности для участия Н-связей. Действие ферментов также относится к реакциям матричного типа [1584]. В этом случае требуется несколько меньшее соответствие в строении, чем при синтезе генетических продуктов. Фермент и субстрат должны соприкасаться лишь на небольшой части своей площади [50]. Н-Связи могут способствовать такому соприкосновению и тем самым влиять на специфичность реакции. [c.287]

    Уже этого краткого рассмотрения основных характеристик полимеров достаточно для того, чтобы понять, что генезис, т. е. способ получения макромолекул из низкомолекулярных молекул мономеров, влияет практически на все основные свойства полимера. В природе полимеры (за исключением некоторых смол) образуются, как правило, с высокой степенью химической и пространственной регулярности, с правильным чередованием звеньев в структуре полимера. Это, например, молекулы целлюлозы, натурального каучука ( цыс-1,4-полиизопрен), белков и нуклеиновых кислот. В формировании природных полимеров принимают участие соответствующие ферменты и катализаторы, которые обеспечивают направленное протекание реакций. В начальный период развития химии синтетических полимеров, когда еще не были найдены совершенные катализаторы синтеза, получались полимеры с нерегулярной структурой, малой молекулярной массой и вследствие -этого с низкими физико-механическими показателями. По мере развития этой отрасли химической науки и производства (особенно с 50-х гг.) были разработаны способы получения пространственно и химически регулярных полимеров (стереоспецифическая полимеризация) из промышленнодоступных мономеров (этилен, пропилен, стирол и др.), что привело к громадному росту производства различных полимеров. Большинство из этих полимеров в природе не создаются. Получение полимеров осуществляется в результате реакций полимеризации или поликонденсации. [c.11]

    Однако значение углеводов далеко не исчерпывается их ролью как главных веществ при создании органических соединений в процессе фотосинтеза, как важных пищевых веществ и сырья для многих видов промышленности. Как было показано в последние годы, передача наследственных признаков, а также биосинтез белка — химической основы г изни — происходят при участии так называемых нуклеиновых кислот (см. том II). Структурными компонентами последних являются мононуклеотиды — производные углеводов. Лабильность углеводных компонентов как раз и создает большие трудности при выделении и синтезе нуклеотидов. [c.622]

    АТФ и другие фосфорилированные нуклеотиды — ГТФ, ЦТФ, УТФ— как источники энергии принимают непосредственное участие в синтезе белка, липидов, углеводов и других химических компонентов протоплазмы. Фосфорилированные нуклеотиды, главным образом нуклеозидтрифосфяты, являются исходным материалом для синтеза макромолекул нуклеиновых кислот. [c.8]

    Нуклеиновые кислоты имеют первостепенное значение в биосинтезе белка. На основании имеющихся данных строение дезоксирибонуклеиновой кислоты, повидимому, определяет специфичность синтеза рибонуклеиновой кислоты на поверхности последней при участии ряда энзимов и кофакторов в соответствии с ее структурой располагаются в определенной последовательности активированные аминокислоты, которые затем соединяются друг с другом кислотноамидными (пептидными) связями в полипептидную цепь. Такое формирование полипептидной цепи на частице рибонуклеиновой кислоты, имеющей определенную структуру, приводит к образованию специфической белковой молекулы, как бы отлитой на рибонуклеиновой модели. [c.328]

    Если при расчете работа окажется положительной, т. е. А>0, это значит, что реакция, протекая в условиях обратимости, слева направо доставляет работу, такая реакция принципиально возможна и, вообще говоря, тем вероятнее, чем больще получается работы. Если же работа отрицательна (А<0), нельзя надеяться на то, что реакция будет протекать сама собой. Она сможет осуществиться лищь при подводе энергии извне, т. е. при сопряжении ее с другим процессом, доставляющим работу. Для сопряжения нужна некоторая и обычно высокая степень организации. Именно это и происходит в живой природе. Энергия, заключенная в пищевых веществах, частично обесценивается в процессах обмена в клетках, но зато получают возможность протекать такие процессы, как синтез белка, синтез нуклеиновых кислот и т. п. Термодинамика не может предсказать, в каких условиях возникнет сопряжение реакций, но она не запрещает его. В клетках, как показал опыт, сопряжение двух реакций осуществляется посредством определенного соединения, участвующего в обеих реакциях. Одна из реакций — доставляющая энергию и способная протекать самопроизвольно (например, какая-либо окислительно-восстановительная реакция), создает продукт, молекулы которого аккумулируют часть энергии процесса в форме химической энергии связей. В другой реакции — потребляющей энергию (например, в синтезе белков) это промежуточное и богатое энергией соединение принимает деятельное участие и обеспечивает ее протекание. Для сравнения работоспособности различных реакций часто принимают, что исходные и конечные концентрации реагирующих веществ равны 1 моль1л. Тогда выражение для максимальной работы становится особенно простым  [c.69]

    Совсем иначе обстоит дело с г/кдем овылеи кислотали. При исследовании синтеза белка — в живых ли клетках или в бесклеточных системах, с участием одних только клеточных компонентов, — всякий раз приходится констатировать, что в отсутствие нуклеиновых кислот белок не образуется. Ученые всего мира с поистине поразительной настойчивостью и упорством взялись за эту группу соединений, и не прошло и 10 лет, как тайна хранения и передачи информации при помощи нуклеиновых кислот в основных чертах была раскрыта. [c.44]


Смотреть страницы где упоминается термин Нуклеиновые кислоты участие в синтезе белка: [c.279]    [c.184]    [c.461]    [c.185]    [c.40]    [c.7]    [c.568]    [c.96]    [c.125]    [c.384]    [c.291]    [c.54]    [c.68]    [c.522]    [c.45]   
Биохимия растений (1966) -- [ c.482 , c.487 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые кислоты



© 2025 chem21.info Реклама на сайте