Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод конфигурация, атома с неспаренным электроном

    Предположение, что на первой стадии действительно происходит гомолитический разрыв связи углерод—галоген, а не синхронная передача атомом магния двух валентных электронов атомам углерода и галогена, подтверждается тем, что оптически активные алкилгалогениды, в которых атом галогена связан с асимметрическим атомом углерода, в процессе реакции полностью рацемизуются. В настоящее время полагают, что неспаренный электрон, оказавшийся в одном из углов тетраэдра, в отличие от пары электронов неспособен закрепить конфигурацию образовавшегося радикала. [c.257]


    Перейдем теперь к атому углерода. Его электронная конфигурация имеет вид с двумя неспаренными электронами. Промоти-рование одного 25-электрона на 2р-орбиталь и построение яр -гибрида дает четыре эквивалентные орбитали, направленные к вершинам правильного тетраэдра угол между ними составляет 109°28 (рис. И1.12). Именно такую конфигурацию имеют молекулы СХ4 (X = Н, Р, С1, Вг, I, СНз). [c.182]

    Обратимся теперь к элементам группы IVA-углероду и кремнию,— атомы которых обладают валентной электронной конфигурацией s p , включающей два неспаренных электрона. Можно было бы ожидать, что они образуют всего по две двухэлектронные связи на атом, как в двухатомных молекулах [c.603]

    Рассмотрим содержание этого понятия на примере соединений углерода, в подавляющем больщинстве которых атом С образует четыре ковалентные связи, хотя в валентной конфигурации основного состояния он имеет только две неспаренные орбитали (два неспаренных электрона, как чаще говорят). [c.172]

    Объяснение строения и свойств молекул, основанное на представлении о перекрывании 5- и р-орбиталей, оказалось во многих случаях непригодным, в частности для соединений углерода. Как видно из схемы электронного строения атома углерода (рис. 29), в нем имеются два неспаренных электрона. Следовало бы ожидать, что такой атом углерода должен быть двухвалентным. Для проявления валентности, равной четырем, необходимо возбудить атом углерода. При этом один из 25-электронов может занять уровень 2р , благодаря чему образуется конфигурация (15) (25) (2р ) (2р.) 2р , в которой имеется 4 неспаренных электрона, из них три электрона обладают орбиталями р, а четвертый — орбиталью 5. При полном спаривании должно быть три однотипных связи, а четвертая связь должна быть другого типа. Од- [c.84]

    При радикальной полимеризации конфигурация мономерного звена в растущей цепи фиксируется не в момент его присоединения к активному центру, а только после присоединения к макро-радикалу последующей молекулы мономера. Это связано с тем, что концевой углеродный атом, несущий неспаренный электрон, не имеет определенной конфигурации вследствие относительно свободного вращения вокруг концевой углерод-углеродной связи. Схематически процесс роста можно представить следующим образом  [c.25]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]


    У атома углерода два неспаренных электрона, и можно было бы ожидать, что атом углерода образует две химические связи. Но при этом он не приобрел бы конфигурации атома неона чтобы это произошло, другие атомы должны поделиться с углеродом четырьмя электронами. Достичь этого можно, если один из х-электронов будет промотирован на р-уровень. [c.114]

    Атом лития на 25-подуровне имеет один неспаренный электрон и, следовательно, соединение должно иметь состав LiH. У атома бериллия этот подуровень заполнен и нет ни одного неспаренного электрона, следовательно, бериллий не должен образовывать ни одной химической связи. У бора и следующих за ним элементов (С, N, О, F) происходит последовательное заполнение 2р-подуровня, и атомы этих элементов будут иметь определенное число неспаренных электронов. Если при образовании связей учитывать только наличие неспаренных электронов, то для этих элементов должны образоваться следующие водородные соединения ВН, СН , NH3, Н7О, HF. Отсюда видно, что, применяя только обменный механизм образования химической связи, можно вступить в противоречие с экспериментальными данными бериллий образует соединение с водородом состава ВеНг, водородные соединения бора также имеют другой состав, а простейшее соединение углерода с водородом имеет состав СН4.Устранить это противоречие можно, предположив, что атомы элементов второго периода в образовании молекул участвуют в возбужденном состоянии, т.е. происходит распаривание 5-электронов и переход их на р-подуровень. Но тут возникает другое несоответствие с опытными данными. Поскольку энергии 5- и р-электронов различны, то и энергии образуемых ими химических связей должны отличаться, а, следовательно, подобные связи Э-Н должны иметь разную длину (в зависимости от того, орбитали какого типа принимают участие в их образовании). Согласовать теорию и эксперимент можно, введя предположение об усреднении энергий 5- и р-подуровней и образовании новых уровней, на которых энергии электронов, находящихся уже на орбиталях другого типа, одинаковы. А раз это так, то по правилу Хунда, в атоме появляется максимальное число неспаренных электронов. Эта гипотеза получила название явления гибридизации, а орбитали, образующиеся в результате усреднения энергий подуровней, называются гибридными. Естественно, что при этом меняются и форма электронных облаков, и их расположение в пространстве. В зависимости от того, какие орбитали участвуют в образовании гибридных орбиталей, рассматривают различные типы гибридизации и пространственные конфигурации образовавшихся гибридных орбиталей (см. рис. 14.). Число получившихся гибридных орбиталей должно быть равно общему числу орбиталей, вступивших в гибридизацию. В зависимости от того, какие орбитали взаимодействуют между собой, рассматривают несколько типов гибридизации  [c.48]

    Вопрос о том, имеет ли атом углерода с неспаренным электроном пространственную или плоскостную конфигурацию, т. е. занимает ли свободный электрон один из углов тетраэдра или же все валент- [c.839]

    В табл. 2 представлены нормальные электронные конфигурации атомов первых десяти элементов периодической системы (каждый дублет состоит из электронов с противоположно направленными спинами). Из табл. 2 видно, что применение правила Хунда к углероду с его двумя неспаренными электронами на 2р-орбитах может привести к выводу о двухвалентности углерода. Однако при образовании связей ато- мы стремятся использовать все возможные орбиты путем гибридиза- [c.42]

    При свободно-радикальной полимеризации винилового мономера концевой атом углерода, несущий неспаренный электрон, имеет практически плоскую форму (хр -гибридизация) и приобретает определенную пространственную конфигурацию (Р или 5) только после присоединения следующей молекулы мономера [90—92]. В общем случае фиксация той или иной пространственной конфигурации может определяться как относительным расположением заместителей К и К в момент присоединения, так и направлением атаки молекулы мономера. Как показали расчеты с использованием потенциалов взаимодействия валентно-несвязанных атомов (см., например, [92]), для реальных полимеров винилового ряда, например полиметилметакрилата, доступным для атаки мономера, обычно оказывается только одно из двух возможных направлений, например сверху от плоскости, образованной тремя заместителями концевого углеродного атома (см. рис. 14). К такому же результату приводит анализ на пространственных молекулярных моделях [85]. Следовательно, характер конфигурации у атома углерода, фиксируемой в акте роста цепи, практически пол- [c.99]

    СНз)зМ—О), или б) вследствие отдачи электрона, как в ионах аммония. Такая потеря электрона дает конфигурацию валентного состояния азота (в виде Ы+) с четырьмя неспаренными электронами на А р -гибридных орбиталях, аналогичных орбиталям нейтрального атома углерода, в то время как (что уже отмечено выше) присоединение электрона (например, в МНг) оставляет для образования связи только два электрона. В этом случае атом азота (в виде Ы ) [c.156]


    В основном состоянии атом азота с конфигурацией 18 2з 2р имеет три неспаренных электрона и в соответствии с этим трехвалентен в простых соединениях. Следующая орбиталь Зс расположена по энергии слишком высоко, чтобы было возможно промотирование на нее одного из 25-электронов, поэтому валентность нейтрального атома азота никогда не превышает трех. Как уже говорилось, пирамидальное расположение связей можно объяснить, исходя из тетраэдрического распределения электронных пар, считая одну из них неподеленной и три связывающими. В то же время положительно заряженный атом азота изоэлектронен нейтральному атому углерода и может иметь четыре неспаренных электрона, т. е. четыре ковалентные связи. Отрицательно заряженный атом азота изоэлектронен нейтральному атому кислорода, и мы получаем две связи и две неподеленные пары электронов. Когда некоторые из электронов участвуют в образовании я-связей, могут возникать плоские тригональные и линейные структуры. Сведения о строении соединений азота собраны в табл. 10.9. [c.162]

    Электронная конфигурация углерода 15 2з 2р , т. е. атом углерода имеет два неспаренных р-электрона, которые могут принимать участие в образовании двух ковалентных связей. Однако известно, что углерод, как правило, образует четыре ковалентные связи. Это объясняется тем, что один из двух 25-электронов переходит на 2р-орбиту, в результате чего появляются четыре неспаренных электрона, которые могут образовать четыре ковалентные связи с другими атомами. Для такого перехода необходимо затратить значительную энергию (161,5 ккал). Однако выигрыш энергии [c.152]

    Эти понятия очень хорошо можно проиллюстрировать на примере химической связи в соединениях углерода, но в равной мере подошел бы любой другой атом, за исключением водорода и щелочного металла. Наинизшая по энергии конфигурация атома углерода 5 25 2р . В ней неспаренными могут быть лишь два спина 2р-электронов. Исходя из этой конфигурации и метода валентных схем, следует ожидать, что углерод двухвалентен и [c.298]

    Характеристика элемента. Атом углерода имеет 6 электронов ls 2s 2p . Последние два электрона располагаются на отдельных р-орбиталях и являются неспаренными. В принципе, эта пара могла бы занимать одну орбиталь, но в таком случае сильно возрастает межэлектронное отталкивание. По этой причине один из них занимает 2рх-, а другой либо 2ру, либо 2рг-орбиталь. Электронная конфигурация з 25 2рх 2ру 2р2°. Различие энергии 5- и р-подуровней внешнего слоя невелико, поэтому атом довольно легко переходит в возбужденное состояние, при котором один из двух электронов с 25-орбитали переходит на свободную 2р. Возникает валентное состояние, имеющее конфигурацию 1з 2з 2рх 2ру 2р2 Именно такое состояние атома углерода характерно для решетки алмаза. Тетраэдрическое пространственное расположение, одинаковая длина я энергия связей объясняются возникновением четырех равнозначных функций д в результате взаимного наложения 5- и р -функций. Это явление, как известно, называют 5рз-гибридизацией, а возникающие функции — рЗ-гибридными (рис. 62, а). Если принять прочность связи, возникающей в результате объединения з-элект-ронных пар, за единицу, то прочность р-связи оказывается равной уз, а 5р -гибридной связи 2. Таким образом, образование четырех 5рЗ-связей обеспечивает атому углерода более устойчивое состояние, чем три р — р- и одна 5 — -связи. Помимо р -гибридиза-ции у атома углерода наблюдается также зр - и р-гибридизация (рис. 62,6, в). В первом случае возникает взаимное наложение [c.212]

    Из спектроскопических наблюдений и представлений атомной теории для основного состояния атома углерода выводится электронная конфигурация 15 2р , т. е. атом имеет два неспаренных р-электрона  [c.35]

    Число ковалентных связей, которые может образовать данный атом (ковалентность атома), определяется числом неспарепных электронов. Например, атом углерода в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи. Атом азота имеет электронную конфигурацию внешнего слоя 25 2р и имеет три неспарениых 2р-электрона и, следовательно, является трехковалентным элементом. Положительный ион азота в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи (например, в ионе КН ). [c.11]

    Атом с номером 6, углерод. Заполнение 2р-подуровня проис-ходиг, как было рассмотрено выше. Шестой электрон занимает одну из двух вакантных р-орбиталей. Электронная конфигурация ls 2s 2p Суммарный спин +1. На внешнем уровне 2 неспаренных электрона. [c.42]

    Теперь становится понятным, почему атомы таких элементов, как бериллий, цинк, кадмий и ртуть, которые могут принимать конфигурацию п8 пр с параллельными электронными спинами, образуют двухковалентные соединения со связями, направленными под углом 180 . Аналогично, атом бора в конфигурации 15 2з 2р р1 с тремя электронами, имеющими параллельные спины, должен с наибольшей вероятностью образовывать лежащие в плсскссти связи, направленные под углом 120° друг относительно друга (ср. с гибридными хр -орбиталями). Циммерман и ван Рис-сельберг показали, что для атома углерода в конфигурации 1з 25 2р1р ,р2 четыре неспаренных электрона с параллельными спинами, согласно принципу Паули, наиболее вероятно распределе ны по направлению к вершинам правильного тетраэдра (ср. с ибридными 5р -орбиталями). [c.204]

    Чтобы объяснить валентность-углерода, равную 4, нужно допустить, что он может иметь электронную конфигурацию, соответствующую наличию четырех неспаренных электронов на внешней оболочке. Для этого нужно возбудить атом углерода, т. е. сообщить ему добавоч- [c.66]

    С другой стороны, радикалы, в оторых атом углерода с неспаренным электроном находится в основании мостика жесткой циклической системы, вынуждены иметь пирамидальную конфигурацию, как, например, в случае радикала апокамфила X  [c.285]

    Атом углерода. Об уникальной неповторимости электронной оболочки атома углерода уже было сказано. В химические реакции он вступает, находясь в возбужденном энергетическом состоянии с конфигурацией валентной оболочки 2 р , имеющей четыре неэквивалентных (я и р) неспаренных электрона и не имеющей доступных для связи вакантных орбиталей или электронных пар. Таким образом, атом углерода в этом состоянии не способен к донорио-акцептор-1ШМ взаимодействиям. Он может образовывать только ковалентные а- и л-связи. [c.45]

    Эта реакция называется реакцией миграции лигандов, поскольку группа СНз переходит к атому углерода соседнего лиганда СО, а иногда также реакцией внедрения, так как ее можно формально рассматривать как внедрение СО по связи НзС—Мп. Здесь связь образуется между Мп(П) и СНз, но можно записать, что образование связи происходит между Мп(0) ((1 -конфигурация) и радикалом -СНз (метил). Этот комплекс диамагнитен и поэтому не имеет неспаренных электронов. Реакция, обратная внедрению, и состоящая в том, что атомы, или группы, находящиеся в р-положении лиганда, отщепляются и непосредственно координируются с центральным атомом, называется реакцией р-элиминирования. Реакции этого типа характерны главным образом для невернеровских комплексов и тесно связаны с каталитическими свойствами (гл. 5, разд. 3). У вернеровских комплексов таких примеров почти не наблюдается. [c.255]

    Обсуждение в предыдущей главе направленной валентности было неполным, так как мы опустили почти весь круг вопросов, связанных с химией углерода. Это было сделано по той причине, что изучение углеродных соединений приводит нас к крайне важному и довольно неожиданному новому понятию. Можно проследить за его возникновением при попытке объяснить характерный факт четырехвалентности углерода, например в СН4. Согласно рис. 2.7, в низшем энергетическом состоянии атома углерода з) (28) 2рх) 2ру) имеются два неспаренных электрона. Спектроскопически это состояние является триплетным — Р. Такой атом, вообще говоря, должен быть двухвалентным с валентным углом примерно таким же, как и в молекуле воды . Единственный способ получить валентность, равную четырем, состоит в том, чтобы возбудить атом, поместив один из 25-электронов в незанятое состояние 2рг, и образовать тем самым конфигурацию 1з) 28) (2рх) 2ру) 2рг). Поскольку теперь имеются четыре неспаренных электрона (раздел 5.9), такое состояние будет квинтетным — Энергия этого возбуждения может быть определена из спектроскопических данных расчет [5] и экспериментальные исследования [346] дают приблизительно одно и то же значение, а именно около 96 ккал1моль . После того как возбуждение произошло, получилось четыре неспаренных электрона, которые могут спариваться с электронами четырех присоединенных групп, как это было описано в гл. 7. Однако именно здесь имеется трудность три таких электрона обладают орбиталями типа р, а четвертый — орбиталью типа В предположении полного спаривания электронов, при котором энергия выражается формулой (7.25), должны, очевидно, иметься три однотипные связи и четвертая связь другого типа. [c.211]

    Последний тип гибридизации с использованием только 5- и р-орбиталей можно показать, рассмотрев, как атом углерода соединяется с четырьмя атомами водорода при образовании молекулы метана. Снова необходимо сначала возбудить атом углерода из основного состояния 8 28 2р , в котором число неспаренных электронов недостаточно для образования четырех связей, в валентное состояние 18 28 2рх2ру2рг. Затем четыре орбитали комбинируются и образуют набор из четырех эквивалентных орбиталей, которые называют зр -гибридными. Это показано на рис. 3.22. Эти орбитали направлены к вершинам тетраэдра и, таким образом, СН4 имеет тетраэдрическую конфигурацию. [c.93]

    Таким же образом можно считать, что атом углерода имеет валентную конфигурацию 15 2з2рх2ру2р2 , получающуюся из конфигурации основного состояния при переходе одного из двух электронов, находящихся первоначально на 25-орбитали атома, на первоначально вакантную 2рг-орбиталь. В этой возбужденной конфигурации имеется четыре неспаренных электрона с одинаковыми спинами и их взаимодействие минимально, если они находятся на максимально возможном расстоянии друг от друга, т, е. в углах правильного тетраэдра с ядром в центре. Система лучше всего описывается четырьмя гибридными зр -орбиталями, аналогичными гибридным орбиталям в атоме неона [разд. 1,13, уравнение (1.48)]. Поэтому такую молекулу, как метан СН4, можно описать при помощи четырех локализованных связывающих молекулярных а-орбиталей, образованных комбинацией (перекрыванием) этих гибридных орбиталей с 15-орбиталями атомов водорода. В результате молекула метана имеет тетраэдрическое строение. [c.46]

    Конфигурация внешней электронной оболочки атома У. 28 р . Энергии ионизации (в ав) С°- С + - - С + ->-С С + соответственно равны 11,256 24,376 47,871 и 64,19. Несмотря на то, что атом У. в основном состоянии имеет 2 неспаренных электрона, для У. характерно образование 4 ковалентных связей. Этот факт объясняется предположением о возбуждении атома У. при взаимодействии до состояния 2 р с 4 неспаренными электронами, что является энергетически выгодным вследствие образования двух дополнительных связей (см. Валентность). Соединения, в к-рых число связей У. равно 3 (см. Радикалы свободные) или 2 (см. Карбены), как правило, неустойчивы в обычных условиях и обладают повышенной химич. активностью, что связано с наличием неспаренных электронов у атома У. Относительная стабильность углерода окиси СО и изонитрилов, в к-рых У. формально 2-валентен, объясняется 3-ковалентной [c.153]

    Н.,. Если один атом образует несколько валентных связей, то оси орбит его неспаренных электронов должны быть направлены вдоль связей, под определенными углами друг к другу, в соответствии с реально наблюдаемым в данном соединении валентными углами. Если среди исходных s-, p-, d- и т. д. орбит свободного атома таких орбит нет, то они образуются прн возникновении X. с. в результате т. н. г и б р н-д и 3 а ц и и атомных орбит. Последняя основана на том, что при образовании соединения сферич. симметрия свободного атома нарушается, вследствие чего классификация одноэлектронных состояний по квантовому числу I более не сохраняется. Типичным примером может служить молекула метана СН4. В свободном состоянии атом углерода содержит четыре валентных электрона в конфигурации (2s) 2p) , орбиты к-рых при образовании СН превращаются в гибридные 5рЗ-орбиты, направленные тетраэдрически иод углами 108° 28 друг к другу. Орбиты этих 4 электронов и образуют связи С—Н. [c.315]

    Для образования одинарной ковалентной связи необходимо, чтобы атом имел орбиту, занятую одним неспаренным электроном для установления четырех связей атом углерода в решетке алмаза должен иметь четыре неспаренных электрона. Однако конфигурация электронного облака изолированного атома углерода в его нормальном состоянии имеет лишь два неспарепных электрона 8 25 2р , при этой конфигурации могут установиться только две ковалентные связи. В большинстве соединений углерод образует четыре ковалентные связи за счет того, что вступая во взаимодействие с другими атомами, атом углерода возбуждается и один электрон переходит с 25 орбиты на менее устойчивую 2р. В этом состоянии его конфигурация записывается 1з 252р . Следовательно, в общем случае направленные ковалентные связи могут обладать различной конфигурацией, которая характеризуется прямым или комбинированным спариванием 5, р и / электронов. Кратность связи определяет координационное число и пространственное распределение связей по углалг (табл. 1.10). [c.47]

    Так, согласно квантовохимическим расчетам, атом бора в конфигурации з 25 2р 2р1 с тремя электронами с одинаковыми спинами должен с наибольшей вероятностью образовывать лежащие в одной плоскости связи, направленные под углом 120° друг к другу. Для атома углерода в конфигурации 5 2з 2р12р12р1 четыре неспаренных электрона должны распределяться по вершинам правильного тетраэдра. [c.12]

    В основном состоянии атом углерода имеет конфигурацию 15 -25 -2р-и его мультиплетпым термом является терм (см. стр. 260). Поскольку это состояние триплетное, в нем имеется всего два неспаренных электрона, так что можно было бы думать, что углерод должен быть двухвалентным. Как же объяснить тогда существование таких молекул, какСН иСС1 , в которых неспаренными должны быть четыре электрона углерода  [c.312]

    Олово, элемент с порядковым номером 50, является членом IVa группы периодической системы элементов. Атом любого из этих элементов имеет на валентном уровне четыре электрона. Основное состояние атома олова — Р-состояние, которому отвечает конфигурация 5s 5p , характерная для соединений двухвалентного олова. Однако в огромном большинстве случаев олово четырехвалентно, т. е. характеризуется 5-состоянием с четырьмя неспаренными электронами. Это состояние в ряде случаев приводит к 55р -гибриди-зации. Олово довольно легко образует прочные ковалентные связи с углеродом, сохраняя при этом способность к связи с различными неорганическими аддендами. За очень немногими исключениями, все органические соединения олова, содержащие хотя бы одну связь Sn. — С, образованы четырехвалентным оловом (sp -гибридизация). Полностью ионные соединения четырехвалентного олова должны были бы иметь конфигурацию 4 ", а аналогичные соединения двухвалентного олова — 4ковалентные соединения четырех-и двухвалентного олова имеют промежуточное число бх-электронов в зависимости от степени гибридизации и частично ионного характера рассматриваемых связей. Благодаря такому различию в числе бх-электронов можно классифицировать валентные состояния олова в различных его соединениях на основании изомерного сдвига (б) лтессбауэровских линий. В такой классификации учитывается только число бх-электронов независимо от величины AR/R. В вводной главе настоящей книги приведен более подробный анализ величин 6 и AR/R. [c.265]

    Так, атом углерода должен был бы являться двухвалентным, так как он имеет лишь два неспаренных электрона и поэтому может образовывать две ковалентные связи. На самом деле в большинстве соединений углерод образует четыре ковалентные связи. В этом случае атом углерода имеет следующую электронную конфигурацию 1 2з2р , при этом один электрон переходит с 25-орбиты на менее устойчивую 2р-орбиту. Благодаря этому атом углерода может образовывать четыре ковалентные связи вместо двух. Энергия промотирования электрона представляет собою энергию, необходимую для того, чтобы атом мог образовать две дополнительные связи. Иногда электронную конфигурацию четырехвалентного атома углерода записывают 18 2з2р2р2р для того, чтобы показать, что четыре валентных электрона занимают различные орбиты. [c.15]

    Атом углерода в основном состоянии имеет конфигурацию 2з 2р с двумя неспаренными р-электронами, з-парой и вакантной р-орбиталью. В таком состоянии атом углерода может образовать две обычные ковалентные связи, причем 2з-пара и вакантная р-орбиталь остаются неиспользованными. Энергетически такая ситуация исключительно невыгодна. Установлено, что энергия, выделяющаяся при образовании атомом углерода даже одной связи, достаточна для перевода атома с затратой 400 кДж/моль в новое валентное состояние с гибридизованными орбитйлями ар, ар или ар . В любом случае при гибридизации ис- [c.302]


Смотреть страницы где упоминается термин Углерод конфигурация, атома с неспаренным электроном: [c.101]    [c.475]    [c.86]    [c.204]    [c.24]   
Курс теоретических основ органической химии (1959) -- [ c.729 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурации атомов электронные

Конфигурация атомов

Неспаренный электрон

Электрон в атомах

Электрон конфигурации

Электронная конфигурация

Электронная конфигурация углерода



© 2025 chem21.info Реклама на сайте