Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Углерод электронная конфигурация атом

    Атом углерода образует возбужденное состояние следующей электронной конфигурации  [c.121]

    В низшем энергетическом (основном) состоянии атом углерода имеет электронную конфигурацию ls 2s 2p , [c.23]

    В молекуле этилена каждый атом углерода использует одну 25-орбиталь и две из трех 2р-орбиталей для образования хр -гибридных связей (см. рис. 5.11). Приведем электронные конфигурации углерода  [c.117]


    Состояние электронов в атоме иногда записывают сокраш,енно путем перечисления символов орбиталей в порядке возрастания главного квантового числа и указания с помощью правого верхнего индекса количества электронов в данном орбитальном состоянии. Например, 1з 2з В 15 2з 2р. Такую запись называют электронной конфигурацией элемента. Часто подобные записи сокращают, включая электронную конфигурацию предшествующего рассматриваемому элементу инертного газа, которая записывается в виде его символа, заключенного в квадратные скобки Ь1[Не]25 ВШе]2з 2р. Следует отметить, что две формы представления электронных состояний атомов — энергетические диаграммы и электронные конфигурации — неэквивалентны. Энергетическая диаграмма дает более детальную информацию, чем электронная конфигурация. Так, уже при переходе к следующему элементу — углероду, атом которого имеет 6 электронов, электронной конфигурации основного состояния 5 25 2р могут соответствовать различные электронные состояния, изображаемые энергетическими диаграммами  [c.41]

    По своей электронной конфигурации атом азота в пиридине существенно отличается от атома азота в пирроле. В пиридине атом азота, подобно любому из атомов углерода в цикле, связан с другими атомами кольца при помощи 5р -орбиталей и предоставляет один электрон для образования я-облака. Третья 8р -орбиталь каждого атома углерода используется для образования связи с водородом, а на sp -орбитали атома азота имеется пара электронов. [c.1023]

    Эти ионы имеют такую же электронную конфигурацию, как атом азота (см. рис. 1.33). При соединении ионов С и О образуется тройная связь, аналогичная связи в молекуле N2. Очевидно, что тройная связь более прочна, чем двойная система с тройной связью обладает более низкой энергией. Выделение энергии при образовании третьей связи с избытком компенсирует ее затраты на перенос электрона от более электроотрицательного кислорода к углероду, и можно считать, что в молекуле СО, как и в N2, имеется тройная связь. Поэтому физические свойства оксида углерода и азота весьма близки  [c.102]

    Перейдем теперь к атому углерода. Его электронная конфигурация имеет вид с двумя неспаренными электронами. Промоти-рование одного 25-электрона на 2р-орбиталь и построение яр -гибрида дает четыре эквивалентные орбитали, направленные к вершинам правильного тетраэдра угол между ними составляет 109°28 (рис. И1.12). Именно такую конфигурацию имеют молекулы СХ4 (X = Н, Р, С1, Вг, I, СНз). [c.182]


    Делокализация электронов, стабилизующая сопряженные карбанионы, требует изменения электронной конфигурации и формы молекулы. а-Угле-родный атом приобретает 5р -гибридизацию для того, чтобы неподеленная пара занимала р-орбиталь, способную перекрываться с р-орбиталью атома углерода карбонильной группы. В результате эта часть молекулы должна быть плоской, поскольку два тригональных углерода и четыре связанных с ними атома лежат в одной плоскости. [c.818]

    Обратимся теперь к элементам группы IVA-углероду и кремнию,— атомы которых обладают валентной электронной конфигурацией s p , включающей два неспаренных электрона. Можно было бы ожидать, что они образуют всего по две двухэлектронные связи на атом, как в двухатомных молекулах [c.603]

    Теперь надо проверить возможность переноса найденных описанным полуэмпирическим методом для этана и пропана атом-атомных потенциалов 9с( р=) с(гтс) и фн. .. с(гтс) на молекулы других насыщенных углеводородов — алканов и ненапряженных цикланов, т. е. углеводородов, в молекулы которых атомы углерода входят в той же электронной конфигурации зр , что и в молекулах этана и пропана. [c.172]

    Для определения параметров атом-атомного потенциала Рс (лр=)... с (ГТС) был использован такой же путь, как й при определении параметров атом-атомного потенциала <Рс ( р=)... с (гтс) При этом потенциал фн... с(гтс) был принят независящим от электронной конфигурации атома углерода, с которым связан атом водорода в молекуле углеводорода. Атом-атомный потенциал с( р>)... с (гтс) был определен с помощью экспериментальных значений К[ для адсорбции на ГТС в качестве опорной молекулы простейшего алке-на — этилена. На основании опытных значений К для этилена было получено следующее выражение для атом-атомного потенциала в форме Бакингема — Корнера (ф, кДж/моль, г, нм)  [c.175]

    На приведенных в лекции 9 примерах адсорбции углеводородов разных классов, простых эфиров и кетонов на одном и том же инертном адсорбенте, содержащем только один вид атомов и обладающем однородной плоской поверхностью известной структуры, —на графитированной термической саже —была показана возможность переноса найденных по опорным молекулам данного класса углеводородов и кислородных соединений полуэмпирических атом-атомных потенциалов на другие молекулы того же класса (алканы, алкены, алкины, ароматические углеводороды, эфиры и кетоны). Была проверена также возможность переноса найденных так атом-атомных потенциалов на углеводороды и гетероциклические соединения, содержащие атомы углерода и кислорода различных электронных конфигурациях. [c.184]

    В заключение рассмотрим атом углерода. Электронную конфигурацию свободного атома можно записать в виде 18 2А 2р . Два 15-электрона па первой или 7(Г-оболочке взаимно насыщаются так же, как и 25-алектроны на второй или -оболочке. Только два 2р-электрона могут дать валентные связи с другими атомами. Если бы в действительности осуществлялась эта конфигурация, углерод оказался бы двухвалентным. Хорошо известно, однако, что углерод четырехвалентен. Чтобы объяснить этот факт, представим себе, что один из 25-электронов перешел на уровень 2р, благодаря чему возникло состояние 1.ч 28 2р . Теперь атом углерода может об. 1адать четырьмя простыми связями, три из которых обусловлены р-электронами п расположены под прямыми углами, а четвертая, обусловленная 25-электропом, безразлична к выбору направления. Эта модель, хотя она и лучше первой, все же неверна, так как противоречит хорошо известному пз органической химии алифатических углеводородов факту абсолютной эквивалентности четырех валентных связей в метане. Истолкование этого явления методами во.лновой механики дано Полингом. При этом не учитывается разница энергий 25- и 2р-элек-тропов. В основе объяснения лежит факт, что если гр(25), 2р ), (2р ) и гр (2р,) являются волновыми функциями для четырех электронов, то любая их линейная комбинация такн- е является законным решением уравнения Шредингера для атома углерода. Найдя коэффициенты, аналогичные а и Ь в уравнении (203), и использовав условие, что энергия молекулы должна быть минимальной, можпо показать [18], что четыре валентности атома углерода должны быть одинаковыми и расположенными под углом а, определяемым уравнением соза= /з. Как показано в гл. XII, это как раз угол, необходимый для построения правильного тетраэдра. [c.185]

    До сих пор рассматривалось такое положение, когда изолированный атом в возбужденном состоянии имеет два, три или четыре неспаренных электрона. К сожалению, нельзя проверить наши предсказания радиального или углового распределения электронов для изолированных атомов, но можно изучить молекулы, образованные этими атомами. Предполагают, что в ковалентных молекулах, в которых неспаренные электроны одного атома становятся спаренными с электронами окружащих атомов, электроны с параллельными спинами находятся как можно дальше друг от друга в соответствии с принципом Паули и принципом неразличимости. В качестве примера рассмотрим атом неона, у которого есть четыре пары электронов во внешней оболочке. Леннард-Джонс на основе принципа Паули предсказал, что наиболее вероятной конфигурацией каждой четверки электронов с параллельными спинами является тетраэдр. Далее, если пренебречь кулоновским отталкиванием, то не будет корреляции между двумя конфигурациями электронов с противоположными спинами, и их можно будет равновероятно найти в любой ориентации друг относительно друга. Однако следует напомнить, что у электронов с противоположно направленными спинами существует определенная тенденция к стягиванию, которому препятствует кулоновское отталкивание корреляция зарядов). Метода проверки такого взгляда на атом неона нет. Однако интересно отметить, что Ме, Аг, Кг и Хе имеют в твердом состоянии структуру с плотной кубической упаковкой, подобной тетраэдрическому метану, а не плотную гексагональную упаковку, найденную для гелия, хотя ранее для всех инертных газов последняя структура ожидалась в предположении, что их атомы должны быть сферическими . Теперь рассмотрим метан, в котором углерод может быть гипотетически представлен как с электронной конфигурацией неона. Когда четыре протона присоединяются к С , образуя СН4, притяжение протонов к электронам приводит к совмещению двух независимых четверок электронов, расположенных в вершинах тетраэдров. Так как молекула метана действительно тетраэдрическая, то это предсказание оправдывается, хотя механизм образования молекулы метана проверить нельзя. Суммируя все сказанное, можно считать, что наиболее вероятное расположение п электронов с одинаковыми спинами будет также и наиболее вероятным расположением п пар электронов. [c.205]


    В молекуле СО осуществляется так называемая семиполярная связь. Электрон атома кислорода переходит к атому углерода, в результате чего электронные конфигурации обоих ионов (С и 0+) делаются подобными электронным конфигурациям атомов азота, в результате между ними возникают три валентные связи. [c.336]

    Идея валентного состояния возникла из следующих соображений. Атом углерода в основном состоянии имеет электронную конфигурацию тогда как при переходе к молекуле метана [c.338]

    При образовании карбидов атом углерода, имеющий в нормальном состоянии электронную конфигурацию ls 2s 2p , вследствие одноэлектронного перехода s- p приобретает энергетически стабильную конфигурацию Is 2s 2p3, которая обусловливает характерную [c.13]

    Пиррол пятичленный гетероцикл с одним атомом азота — также относится к ароматическим соединениям. Атомы углерода и азота в нем, как и в пиридине, находятся в состоянии л/ -гибридизации. Но в отличие от пиридина атом азота в пирроле имеет иную электрон-конфигурацию. На негибридной р-орбитали атома азота в пирроле находится неподеленная пара электронов. Она принимает участие в сопряжении с /р-электронами четырех атомов углерода с образованием единого шестиэлектронного облака (рис. 12.1,6). Три. s/ --гибридные орбитали образуют три а-связи. Атом азота с рассмотренным Электронным строением называют пиррольным. [c.353]

    Исходя из электронной конфигурации ат<жа кислорода в основном состоянии (15 2 2р у трудно ожидать, что он может находиться подобно атому углерода в состоянии 2з 2/ -гибридизации. Для этого он должен лишиться двух электронов и перейти в ион 0+ -с электронной конфигурацией Так как второй ионизационный, потенциал кислорода равен 35,15 эв, а окружаюище электрон атомы имеют сравнительно слабое сродство к нему, то предполагаемая ситуация практически невозможна. j [c.98]

    Пусть Б реакции ароматического замещения реагент г атакует атом р, углерода субстрата. Последний становится связанным не только с отщепляющимся атомом водорода, но и с приближающимся заместителем г. В результате атакуемый атом углерода субстрата переходит из зр - в хр -гибридное состояние. Будучи в хр -гибридном состоянии, атом С выбывает из системы сопряжения и, в зависимости от природы заместителя г, на этом атоме локализуется ноль, один или два 2рг-электронов из делокализованных я-электронов. Структура с такой я-электронной конфигурацией называется комплексом Уэйланда в методе ЭЛ этот комплекс рассматривается как гипотетический активированный комплекс реакции. Ниже изображен комплекс Уэйланда (дуга отделяет fx-тый центр комплекса от делокализованных [c.62]

    Число ковалентных связей, которые может образовать данный атом (ковалентность атома), определяется числом неспарепных электронов. Например, атом углерода в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи. Атом азота имеет электронную конфигурацию внешнего слоя 25 2р и имеет три неспарениых 2р-электрона и, следовательно, является трехковалентным элементом. Положительный ион азота в состоянии 2з2р имеет четыре неспаренных электрона и может образовать четыре ковалентные связи (например, в ионе КН ). [c.11]

    Бор - единственный элемент группы ЗА, ксзторый мнжет считаться неметаллическим. Этот элемент в твердом состоянии имеет протяженную каркасную структуру. Температура плавления бора, 2300°С, является промежуточной между температурами плавления углерода, 3550°С, и кремния, 1410°С Атом бора имеет электронную конфигурацию [Не]2х 2р. Этот элемент во всех своих обычно встречающихся соединениях трехвалентен. Мы уже упоминали в разд. 7.7, ч. 1, что электронное окружение атома бора в его галогенидах является исключением из правила октета, поскольку в валентной оболочке бора имеется всего шесть электронов. По этой причине галогениды бора являются сильными льюисовыми кислотами (см. разд. 15.10). [c.328]

    Атом с номером 6, углерод. Заполнение 2р-подуровня проис-ходиг, как было рассмотрено выше. Шестой электрон занимает одну из двух вакантных р-орбиталей. Электронная конфигурация ls 2s 2p Суммарный спин +1. На внешнем уровне 2 неспаренных электрона. [c.42]

    Карбонилы — комплексные соединения, в которых лигандами являются молекулы оксида углерода(П) Ре(С0)5, N (00)4. Химические связи в молекулах карбонилов металлов образованы аналогично химич ским связям между другими лигандами и ионами металлов. Электростатические представления для объяснения ее возникновения здесь не подходят. С позиций методов ВС (за счет донорно-акцепторного взаимодействия неподеленных электронных пар лигандов и вакантных орбиталей атома металла) и МО (образование заполненных электронами связывающих и несвязывающих орбит 1лей — правило 18) такие комплексы возможны. Например, атом никеля с электронной конфигурацией №. ..3 45 имеет 10 валентных электронов. Для выполнения правила 18-ти электронов необходимы еще 8 электронов, которые могут поставить 4 лиганда [c.366]

    Гибридизация орбиталей затрагивает не только атом углерода. Геометрия большого числа молекул определяется гибридизацией орбиталей атомов. Приведем только один пример — молекулу хлорида бора ВС1з. Электронная конфигурация бора — 1я 25 2р три эквивалентные связи В — С1 могут осуш ествляться только с помош ью [c.69]

    Особен)юсти морфологии углеродных модификаций во многом определяются особенностями С-С связей в этих структурах. Открыты три аллотропные формы углероОа, которые имеют различные кристаллические ячейки и тип связей между атомами углерода аямач. графит, карбин. В основном состоянии углерод имеет электронную конфигурацию 1з 2з"2р. В этом состоянии атом углерода двухвалентен, В большинстве химических соединений углерод выступает как четырехвалентный элемент. Четырехвалентный атом углерода находится в одном из трех валентных состояний, соответствуюших зр зр -, зр- гибридизации электронов в атомах углерода. [c.6]

    В органических соедпнеипях атом углерода имеет электронную конфигурацию Ф2 2рх2ру2р2 и способен пребывать в нескольких валентных состояниях. В насыщенных углеводородах он образует четыре эквивалентные или близкие по параметрам связи, направленные к вершинам правильного тетраэдра, хотя в их образовании участвуют разные по форме и энергии АО (одна 5- и три р-орбитали). Этот факт нашел объяснение на основании предположения о том, что валентные АО атома углерода способны смешиваться и образовывать четыре эквивалентные гибридные орбитали, обеспечивающие наиболее эффективное перекрывание с АО других атомов. Таким образом, в алканах атом углерода находится в состоянии 5/ -гибридизации и имеет тетраэдрическую ршнфигурацию- [c.26]

    Для объяснения четырехвалентности углерода Полингом и Слетером был предложен постулат, согласно которому четырехвалентность углерода описывается как результат следующих процессов один из 25-электронов переходит на незанятую 2р-орбиталь, в результате чего атом углерода приобретает конфигурацию Is 2s2px2py2p , которую можно преобразовать в четыре эквивалентные гибридные sp -орби-тали, обеспечивающие наиболее полное перекрывание при образовании связей с другими атомами. [c.34]

    Аналогичное влияние геометрии молекул с заторможенным внутренним вращением на удерживание на ГТС проявляется для < )енилзамещенных дифенилов — терфенилов, а также трифенил-метана. Углы поворота между бензольными ядрами в этих молекулах увеличиваются при переходе от пара- к мета- и орто-изомеру. Соответственно уменьш ается их удерживание на ГТС. Так, константы Генри в ряду п-, м- и о-терфенилов при 340°С составляют соответственно 78, 38 и 5 см /м . Молекулы трифенилметана, несмотря на большую молекулярную массу, удерживаются на ГТС еще слабее, так как центральный атом углерода, имеющий электронную конфигурацию ориентирует фенильные группы по углам тетраэдра, что мешает звеньям этих молекул приблизиться к поверхности ГИГС. [c.20]

    Прежде всего было установлено, что полученный атом-атомный потенциал <рс (лрз)... с(гтс) дает при адсорбции этилена на ГТС заниженные значения 1п [если принять, что фн... с(гтс) (9.44) остается неизменным]. Таким образом, межмолекулярное взаимодей- ствие с ГТС атомов углерода молекул, находящихся в конфигурации 5р2, сильнее, чем в рассмотренном выше случае адсорбции молекул с атомами углерода в конфигурации хр . Уменьшение Кг и 1 при адсорбции на ГТС этилена по сравнению с этаном (см. табл. 1.2) происходит за счет уменьшения числа атомов водорода в мо- лекуле этилена по сравнению с молекулой этана. Этот пример показывает, что адсорбция на ГТС позволяет выявить влияние на межмолекулярное взаимодействие электронной конфигурации атомов углерода в молекулах углеводородов. [c.175]

    При обсуждении рис. 11.7 было отмечено, что расчет АГп ,с,1 для адсорбции циклопропана на основе исправленного с использованием экспериментальных данных по адсорбции этана потенциала Фс( р=) г дал резко заниженные результаты. По-видимому, это объясняется тем, что из-за очень сильного напряжения цикла электронная конфигурация атомов углерода в молекуле циклопропана близка к Действительно, даже для адсорбции циклопропана на ГТС расчет К с помощью атом-атомного потенциала Тс<1рп - С(гтс> дал немного заниженные результаты (см. рис. 9.5), в то время как расчет с помощью потенциала -. ссгтс) дал значения /(ьпрактически совпадающие с газохроматографическими измерениями. При такой конфигурации атомов углерода и связей в цикле молекула циклопропана должна обладать постоянными электрическими моментами. Если эти моменты аппроксимировать суммарным точечным квадрупольным моментом, локализованным в центре- цикло-пропанового кольца, то для Ф можно воспользоваться уравнением [c.220]

    Теперь становится понятным, почему атомы таких элементов, как бериллий, цинк, кадмий и ртуть, которые могут принимать конфигурацию п8 пр с параллельными электронными спинами, образуют двухковалентные соединения со связями, направленными под углом 180 . Аналогично, атом бора в конфигурации 15 2з 2р р1 с тремя электронами, имеющими параллельные спины, должен с наибольшей вероятностью образовывать лежащие в плсскссти связи, направленные под углом 120° друг относительно друга (ср. с гибридными хр -орбиталями). Циммерман и ван Рис-сельберг показали, что для атома углерода в конфигурации 1з 25 2р1р ,р2 четыре неспаренных электрона с параллельными спинами, согласно принципу Паули, наиболее вероятно распределе ны по направлению к вершинам правильного тетраэдра (ср. с ибридными 5р -орбиталями). [c.204]

    Вернемся к атому углерода с конфигурацией li 2i 2p . Для него возможны термы Р, и 5. Исходя из первого правила Гунда, основным термом атома углерода должен быть терм Р. Ему отвечает конфигурация, у которой спины -электронов параллельны. Компоненты триплета Рд, Р и Р2- Их энергии соответственно 0,15 и 42 скГ в согласии с третьим правилом Гунда. Синглетные термы Д2 и отвечают конфигурациям со спаренными -электронами. Согласно первому правилу Гунда, им отвечает более высокое значение энергии (10 192 и 21 647 см ). Эти состояния метастабильны, неустойчивы. Если термы одной конфигурации так значительно различаются по энергии, то возбуждение атома, приводящее к переходу электрона с одиого подуровня на другой, требует еще большей энергии. Например, изменение конфигурации атома углерода с ls 2i 2 > до li 2i2 (терм 5) требует энергии 35 ООО см (4,35 эВ). [c.55]

    Вернемся опять к молекуле метана СН4. Хорошо известно, что эта молекула имеет тетраэдрическую структуру, все четыре связи С—И в ней равноценны, а атом углерода проявляет валентносгь, равную четырем. Для этого необходимо, во-первых, перрйти от электронной конфигурации основного состояния [c.142]

    Чтобы объяснить валентность-углерода, равную 4, нужно допустить, что он может иметь электронную конфигурацию, соответствующую наличию четырех неспаренных электронов на внешней оболочке. Для этого нужно возбудить атом углерода, т. е. сообщить ему добавоч- [c.66]

    Вор входит в главную подгруппу III группы периодической системы элементов и имеет электронную конфигурацию ls 2s 2p под ним расположен алюминий. Во втором периоде при переходе от бора к углероду радиусы ромов уменьшаются, а в IV группе при переходе от углерода к кремнию — увеличиваются. Поэтому радиусы атомов бора и кремния близки. Бор существенно отличается от алюминия и обнаруживает большое сходство с кремнием. Бор образует три ковалентные связи с атомами других элементов. В зависимости от природы последних атом бора может образовать еще одну до-норноакцепторную связь, предоставляя р-орбиталь для электронной пары другого атома. Таким образом, бор в соединениях проявляет валентность, равную трем, или ковалентность, равную четырем. [c.368]

    Атом кислорода имеет электронную конфигурацию s 2s 2p 2p y2pl, и при связывании с другими атомами может, так же, как и атом углерода, давать гибридные орбитали, обеспечивающие образование наиболее прочных связей. Так, например, при связывании с двумя атомами углерода метильных групп и образовании дийетилового эфира СНз—О—СНз атом кислорода может использовать четыре 5р -гибридных орбитали две для образования ст-связи за счет перекрывания с sp -орбиталями каждого из двух атомов углерода, а остальные две — для оставшихся свободными двух пар электронов. Было показано, что угол С—О—С составляет 110°, длийа связи С—О равна 1,42 А, а ее энергия 86 ккал/моль. [c.26]

    Для определения электронной конфигурации бензола используется ауфбау-принцип. Каждый атом углерода поставляет в л-си-стему один электрон (каждый атом углерода поставляет 6 электронов 2 остаются в виде ls и вносят несущественный вклад в связывание 3 используются с а-остове, по одному на каждую а-связь следовательно, остается I электрон на каждой 2ря-орби-тали). Два электрона зани.мают низшую орбиталь (которую обычно обозначают символом а). Четыре электрона могут занимать две вырожденные орбитали, обозначаемые символом е. Поэтому конфигурация будет a-e . Существенно то, что заняты, только те молекулярные орбитали, которые характеризуются как связывающие. Это вторая особенность, обусловливающая стабильность бензольного кольца. [c.540]

    Гибридюация. Молекула метана СН4 образуется из одного атома углерода и четырех атомов водорода. В основном состоянии атом углерода имеет электронную конфигурацию С учетом правила Хунда можно [c.38]

    Рассмотрим электронную конфигурацию циклопентадиенил-аниона (рис. 10.5). Каждый атом углерода тригонально гибридизован и связан о-связями с двумя другими атомами углерода н одним атомом водорода. Кольцо циклопентадиенил-аниона представляет собой правильный пятиугольник, углы которого 1108° (1,885 рад)] лишь немного отличаются от тригональных fl20° (2,094 рад)] некоторая неустойчивость, возникающая из-за несовершенного перекрывания (угловое напряжение), более чем компенсируется за счет возникающей делокализации. Четыре атома углерода имеют по одному электрону на каждой р-орбитали, пятый атом углерода [c.315]

    В соответствии с современными представлениями, атом железа состоит из ядра, вокруг которого расположены четыре слоя электронов — /С, L, М, N. Каждый слой в СБОЮ очередь подразделяется на подгруппы 5, р и ( , как это показано на рис. 2, а. Как известно, при реакциях металлов переходных групп, к которым относится железо, в их атомах происходит заполнение недостроенных электронных слоев. При образовании Ре(С0)5 под воздействием окиси углерода недостроенная Зс -подгруп-па Л1-СЛ0Я пополняется двумя 5-электронами Л -слоя (рис. 2, б). Такой переход электронов в З -подгруппу сопряжен с меньшей затратой энергии по сравнению с обратным переходом электронов из 7И-слоя в Л -слой. Точно так же энергетически менее выгоден переход электронных пар от окиси углерода Зй- и 45-подгруппы без предварительного перескока двух электронов Л -слоя в З -под-группу УИ-слоя. Поэтому образование Ре(С0)5 происходит путем присоединения одной пары электронов к -подгруппе УИ-слоя и четырех пар электронов к 5- и р-под-группам ТИ-слоя, причем электронная конфигурация приобретает структуру инертного газа криптона (рис. 2, в). [c.22]

    Каждая гибридная орбиталь заполняется одним электроном. Атом углерода в состоянии. р -гибридизации имеет электронную конфигурацию 2sp ) (рис. 2.4,6). Такое состояние гибридизации характерно для а I омов углерода в насыщенных углеводородах (алканах) и соо1 нетственно в алкильных радикалах их производных. [c.32]

    Гибридизация (рис. 2.3,6). В результате смешения одной 2з-и двух 2р-А0 возбужденного атома углерода образуются три равноценные хр -гибридные орбитали, располагающиеся в одной плоскости под углом 120°. Негибридизованная 2рг-А0 находится в перпендикулярной плоскости. Атом углерода в состоянии s/7 -гибpидизaции имеет электронную конфигурацию ls (2sp ) 2p (рис. 2.4, в). Такой атом углерода характерен для ненасыщенных углеводородов (алкенов) н соответствующих радикалов, а также некоторых функциональных групп, например карбонильной, карбоксильной и др. (см. табл. 1.1). [c.32]


Смотреть страницы где упоминается термин Углерод электронная конфигурация атом: [c.183]    [c.197]    [c.47]    [c.388]    [c.475]    [c.262]    [c.24]    [c.33]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.26 , c.187 , c.189 , c.191 ]

Лекции по общему курсу химии Том 1 (1962) -- [ c.26 , c.187 , c.189 , c.191 ]




ПОИСК





Смотрите так же термины и статьи:

Конфигурации атомов электронные

Конфигурация атомов

Электрон в атомах

Электрон конфигурации

Электронная конфигурация

Электронная конфигурация углерода



© 2025 chem21.info Реклама на сайте