Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Прочность полимеров механическая

    ДЕФОРМАЦИОННЫЕ СВОЙСТВА И МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ ПОЛИМЕРОВ [c.208]

    При частичном проникновении жидкости или пара в матрицу возникают градиенты концентраций, которые действительно оказывают прямое механическое действие вследствие неоднородного набухания или косвенное действие вследствие неоднородной релаксации или распределения напряжений. Подобные действия даже усиливаются в присутствии температурных градиентов и могут вызвать быстрое образование обычных трещин и трещин серебра. В случае медленного проникновения окружающей среды в однородную матрицу с достаточно перепутанными цепями вынужденные напряжения обычно снимаются упругими или вязкоупругими силами. Например, в листах поликарбоната после проведения искусственных погодных испытаний не обнаруживаются трещины даже после воздействия суровых температурно-влажностных циклов [212]. Однако за относительно короткий период, 30—32 мес, естественных погодных испытаний на стороне, обращенной к солнечным лучам, возникала сетка поверхностных микротрещин. Путем сравнения с искусственным ультрафиолетовым облучением образцов авторы работы [212] смогли показать, что фотохимическая деградация поверхностных слоев вносит дефекты в материал и снижает прочность полимера в такой степени, что вызванные физически неоднородные напряжения стимулировали образование микротрещин, а не рассасывание неоднородностей. Влияние жидкой среды на образование обычной трещины и трещины серебра будет рассмотрено в разд. 9.2.4 (гл. 9). [c.319]


    Механические свойства полимеров зависят не только от их химической природы, степени сшивки пространственной сетки, но и от ориентации макромолекул и надмолекулярных структур, пластификации, степени наполнения и др. Ориентирование цепей макромолекул и надмолекулярных структур приводит к анизотропии свойств полимера. Обнаруживается резкое увеличение его прочности Б направлении ориентации. Этот факт широко используется в процессах прядения волокон и получения пластических масс. Ориентирование макромолекул способствует кристаллизации и увеличению хрупкой прочности полимера. [c.391]

    Установлено, что при повышении модуля упругости (а следовательно, механической прочности) полимеров разного строения заметно увеличивается и их Ещ. Увеличение межмолекулярного взаимодействия полимеров без изменения их химического состава, по- [c.207]

    Гл. Деформационные свойства и механическая прочность полимеров [c.222]

    Виды парных взаимодействий цепных сегментов (рис. 1.12) позволяют сделать вывод о том, что в отсутствие течения разрыв цепи и ее прочность определяют механические свойства полимеров. Действительно, имеется ряд наблюдений, подтверждающих данное предположение  [c.21]

    В настоящей главе освещены вопросы, связанные только с прочностью полимеров на разрыв, так как другие виды разрушения еще мало изучены. Изучение прочности полимеров и факторов, влияющих на нее, очень важно с точки зрения отыскания путей уменьшения скорости возникновения и роста трещин или надрывов, что, в свою очередь, даст возможность резко улучшить механические свойства этих материалов и удлинить срок службы изделий, полученных из них. При этом необходимо учесть, что возможность практического применения полимерных материалов определяется не столько их стойкостью к разрушению, сколько их способностью сопротивляться большим деформациям, сильно искажающим форму полимерного изделия. [c.425]

    Прочность полимера - свойство материала сопротивляться разрушению под действием механических напряжений. [c.403]

    Механическая прочность полимеров может быть также повышена путем добавления наполнителей, например сажи и мела, армированием волокнами, например стекловолокном. [c.361]

    В области нехрупкого разрушения полимеров между температурами Тхр и Тс (см. рис. 11.4) рассеяние упругой энергии при росте трещин из-за различных локальных деформационных процессов становится существенным и термофлуктуационный механизм переходит в термофлуктуационно-релаксационный (см. табл. 11.2). Кроме того, механические потери оказывают существенное влияние на динамическую прочность полимеров при циклических нагружениях. Вызываемый ими локальный разогрев в местах перенапряжений ускоряет рост трещин и снижает долговечность и прочность. [c.314]


    Модуль упругости полимеров в вязкотекучем состоянии невысок. Так, область вязкотекучего состояния определяют как область, в которой модуль через 10 с после действия нагрузки оставляет 10 -5 Па. Механическая прочность полимеров в этом [c.253]

    Для полимеров характерны некоторые особенности, такие, как высокоэластическое состояние в определенных условиях, механическое стеклование, способность термореактивных макромолекул образовывать жесткие сетчатые структуры. Механическая прочность полимеров возрастает с увеличением их молекулярной массы, при переходе от линейных к разветвленным и далее сетчатым структурам. Стереорегулярные структуры имеют более. высокую прочность, чем полимеры с разупорядоченной структурой. Дальнейшее увеличение механической прочности полимеров наблюдается при их переходе в кристаллическое состояние. Например, разрывная прочность кристаллического полиэтилена на 1,5—2,0 порядка выше, чем прочность аморфного полиэтилена. Удельная прочность на единицу площади сечения кристаллических полимеров соизмерима, а на единицу массы на порядок превышает прочность легированных сталей. [c.361]

    Введение наполнителей существенно влияет на механические и физико-химические свойства полимерных материалов. Наполненные полимерные материалы представляют собой макроскопически неоднородные системы, содержащие диспергированные вещества, распределенные в непрерывной фазе — полимере. Твердые наполнители в зависимости от формы частиц подразделяются на порошкообразные и волокнистые . Порошкообразные твердые наполнители можно условно разделить на две группы усиливающие наполнители, при введении которых прочность полимеров значительно повышается, и инертные наполнители — не влияющие на прочность полимеров. [c.182]

    Высокополимерные соединения, пригодные для изготовления эластичных и термостабильных резин, получают преимущественно поликонденсацней диметилсиландиола, тщательно очищенного от различных примесей (чтобы предотвратить образование циклических соединений). Полученный полимер смешивают с наполнителем (окись титана или кремния), повышающим механическую прочность полимера, и вводятвсмесь перекись (например перекись бензоила), при помощи которой производится последующая вулканизация полисилоксана, т. е. образование полимера сетчатой структуры. Вулканизация начинается в процессе формования изделия и заканчивается прогреванием изделий в термошкафах при 160—200°. [c.484]

    ГА Х. Деформационные свойства механическая прочность полимеров [c.232]

    Полиэтилен отличается высокой стойкостью к действию различных агрессивных сред. При комнатной температуре под действием кислот он не набухает и ие изменяет физико-механиче-еких свойств. При нагревании набухание полиэтилена в раство рах кислот или и eлoчeй постепенно возрастает и одновременн снижается механическая прочность полимера. Копцентрироваи-пая азотная кислота вызывает заметное разрушение полиэтилена уже при комнатной температуре, а с повышением температуры разрушающее действие азотной кислоты иа полиэтилен быстро увеличивается. [c.211]

    С понижением температуры также повышается предел вынужден- ной эластичности, ибо уменьшается интенсивность теплового движения. Следовательно, увеличивается количество механической энергии, которое необходимо добавить, чтобы преодолеть потенциальные барьеры. Когда температура снизится настолько, что макромолекуле легче разорваться, чем менять свою конформацию, и предел вынужденной эластичности превысит прочность полимера, последний разрушается как хрупкое тело (рис. 109,/). [c.413]

    МЕХАНИЧЕСКАЯ ПРОЧНОСТЬ ПОЛИМЕРОВ [12, 22, 23] [c.413]

    Как отмечает Берри, исследования прочности полимеров развиваются в двух направлениях. Первое относится к механике разрушения и к энергетическому подходу исходя из работ Гриффита и модели упругого твердого тела с микротрещиной, т. е. рассматриваются макроэффекты разрушения. Второе направление относится к физике (кинетике) разрушения и рассматривает молекулярноатомные механизмы и микромеханику разрушения. На Западе предпочитают первый подход (Гриффита), в СССР — второй (Журкова). Рассмотрим вначале результаты первого подхода к эластомерам. В этих опытах исследования механики разрушения проводились на образцах эластомеров и резин с искусственными надрезами. Методика испытания образцов с надрезом получила название испытания на раздир, который широко изучался в работах Ривлина и Томаса [12,1], Томаса [12.2] и других исследователей [12.3 12.4 82]. В процессе испытаний на раздир определялась энергия разрушения, которая зависела от заданной скорости движения зажимов. Энергия раздира включает свободную энергию образования новых поверхностей и механические потери, причем механические потери столь велики, что превышают свободную поверхностную энергию на много порядков. Эластомер считается тем прочней, чем большие затраты работы внешних сил требуются на раздир. [c.334]

    Радиационно-химические процессы происходят с больщнми скоростями, так как энергия активации резко снижается по сравнению с реакциями неактивированных молекул. Энергетический барьер радиационно-химических реакций невелик (около 20- 40 кДж/моль), благодаря чему многие радиационно-химические процессы могут проводиться при относительно низких температурах. Разработка и реализация радиационно-химических процессов в промышленности происходит с участием новой радиационно-химической технологии. К числу реализованных радиационно-химических процессов относятся прежде всего такие реакции органического синтеза, как галоидирование, сульфирование, окисление, присоединение по двойной связи и др. Радиационные методы применяются в технологии высокомолекулярных соединений в процессах полимеризации, а также для повышения термической стойкости и механической прочности полимеров путем сшивания макромолекул. Реализован процесс радиационной вулканизации каучука разработаны радиационно-химические методы производства изделий из полимерных материалов — пленок, труб, кабельной изоляции и др. [c.254]


    По мере повышения содержания хлора н полиэтилене pe. к() изменяются его физико-механические свойства. При хлорировании полиэтилен постепенно начинает утрачивать присущую ему кристалличность и становится высокоэластичным н каучуко-иодобным полимером, по свойствам напоминающим поливинн. -хлорид, содержащий большое количество пластификатора. По мере увеличения содержания хлора и снижения степени криста,I-личности полимера его эластичность возрастает, достигая максимума при 15—20%-ном содержании хлора, одновременно умень-П1ается и прочность полимера. Минимальная прочность хлорированного полиэтилена соответствует. 35—38%-ному содержанию хлора (рис. 70). При еще большем содержании хлора полимер [c.220]

    Полиорганосилоксаны и материалы на их основе не всегда полностью удовлетворяют запросы реставраторов главным образом из-за недостаточной механической прочности полимеров, плохой адгезии к ряду материалов, необходимости введения инициаторов отверждения для достижения нерастворимости. Этих недостатков не имеют КОС, содержащие связи кремний — азот — полиорганосилазаны. [c.33]

    Введение пластификатора в полимер значительно изменяет его механические свойства. Долгое время существовало представление о непрерывном понижении прочности полимера с увеличением содержания в нем пластификатора. Однако рядом работ [269— 275] было показано, что введение в полимер небольших количеств пластификатора приводит к повышению механической прочности. Но при дальнейшем увеличении количества пластифршатора прочность полимера уменьшается, т. е. зависимость разрушающей прочности пластифицированного полимера от количества пластификатора носит экстремальный характер (рис. 4.11). [c.171]


Смотреть страницы где упоминается термин Прочность полимеров механическая: [c.221]    [c.477]    [c.235]    [c.208]    [c.216]    [c.144]    [c.348]    [c.208]    [c.429]   
Высокомолекулярные соединения (1981) -- [ c.413 , c.465 , c.472 , c.475 ]

Высокомолекулярные соединения Издание 3 (1981) -- [ c.413 , c.465 , c.472 , c.475 ]




ПОИСК





Смотрите так же термины и статьи:

Механическая прочность



© 2025 chem21.info Реклама на сайте