Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стеклование механическое

    Температуры стеклования и текучести по своей природе не аналогичны переходам вещества из одного агрегатного состояния в другое. Прежде всего они не являются константами даже для данного образца полимера. Только рассмотрев особенности, внутреннего строения и некоторые механические свойства полимеров, мы сможем правильно понять природу этих переходов, а пока ограничимся общей характеристикой их. [c.570]


    Стеклование эластомеров. Как уже указывалось, физические состояния полимеров носят релаксационный характер, соответственно переход полимеров в стеклообразное состояние имеет релаксационную, кинетическую природу. Экспериментально наблюдаемое значение Гс зависит от соотношения между скоростью молекулярных перегруппировок и скоростью охлаждения (нагревания) образца, либо частотой переменного механического поля. [c.43]

    Термоэластопласты имеют высокие значения сопротивления разрыву, относительного удлинения, эластичности, сопротивления раздиру и стойкости к многократным деформациям, морозостойкости. Оптимальные физико-механические свойства достигаются в тех случаях, когда разность между температурами стеклования соответствующих блоков превышает 100°С. [c.284]

    Механическая пластификация осуществляется путем нагревания полимера в деформированном состоянии до температуры выше температуры стеклования и охлаждении под нагрузкой. При этом происходит распределение и ориентация макромолекул в одном (волокна) или двух (пленки) направлениях, сближение и уплотнение макромолекулярных цепей. [c.380]

    Общим для описанных двух видов стеклования является то, что ниже температуры стеклования механическое воздействие не вызывает изменения конформаций цепных молекул и, следовательно, высокоэластических деформаций. [c.11]

    Гидрирование полимеров до низких значений остаточной ненасыщенности довольно трудно, в лучших случаях в полимерах остается 1—2% ненасыщенных звеньев, а в большинстве процессов их содержание составляет 5—10%. Вследствие этого гидрированные полимеры сохраняют способность вулканизоваться, так же как и исходные ненасыщенные эластомеры. С повышением степени гидрирования усиливается кристаллизуемость полимеров, повышаются температура стеклования, механическая прочность, озоно-стойкость и стойкость к действию растворителей, сопротивление старению. Гидрированные каучуки могут использоваться самостоятельно или в смесях с другими полимерами. [c.229]

    Оценивая роль концентрации эффективных цепей и природы диизоцианата в повышении физико-механических свойств, можно отметить одну характерную особенность. Если сравнивать для эластомеров различного строения сопротивление разрыву и относительное удлинение в эквивалентном температурном интервале выше температуры стеклования, то они практически одинаковы [c.536]

    В стеклообразном состоянии полимер является упруго-твердым веществом и его деформируемость при действии внешних механических сил очень невелика, в особенности при температурах, не слишком близких к температуре стеклования (рис. 200). В области температуры стеклования происходит сильное увеличение дефор- [c.572]


    Температура стеклования данного полимера не является величиной вполне постоянной, так как релаксационный характер процессов деформации делает ее зависящей от скорости охлаждения, от характера механических 7 si Jo W W воздействий и некоторых других t,°  [c.583]

    При пластикации в присутствии растворителя наблюдается значительное изменение физико-механических свойств полимеров понижаются температуры стеклования и текучести, снижается хрупкость, повышается морозостойкость и т. п. Такое изменение свойств полимеров называется пластификацией, а используемый при этом высококипящий растворитель называется пластификатором. Для каучуков в качестве пластификаторов чаще всего используют бутилолеат, дибутилфталат, диоктилфталат, три-бутилфосфат, трикрезилфосфат и другие сложные эфиры. Применение пластификаторов позволяет вести пластикацию при более низкой температуре, что снижает расход энергии, затрачиваемой на проведение этого процесса. [c.299]

    Внешняя пластификация может быть физической и механической. При физической пластификации в полимер вводятся пластификаторы — низкомолекулярные твердые или жидкие органические соединения с высокой температурой кипения и низким давлением пара. Пластификаторы экранируют и сольватируют функциональные группы в звеньях полимера и снижают потенциальный барьер внутреннего вращения макромолекул, что приводит к увеличению гибкости цепей и снижению температуры стеклования. Понижение температуры стеклования пропорционально количеству молей пластификатора, удерживаемых полимером  [c.379]

    Если во всех экспериментах применяется один и тот же режим охлаждения (непрерывный или с остановками), то положение области стеклования на температурной шкале для всех свойств совпадает и не зависит от частоты механических или ультразвуковых колебаний. Вообще механические, электрические и другие виды силовых воздействий из-за самой природы структурного стеклования не влияют на Тс, если эти внешние воздействия достаточно малы. При оценке многих механических воздействий, например при измерении модулей упругости, необходимо считаться с тем, что только малые напряжения и деформации практически не влияют на структуру полимеров и, следовательно, на температуру стеклования. [c.87]

    Механическое стеклование (стеклование а силовых полях) - переход полимеров из высокоэластического в твердое стеклообразное состояние под воздействием энергетических полей, приводящих к резкому уменьшению сегментальной подвижности полимерных цепей. [c.401]

    Нагляднее всего суть механического стеклования иллюстрируется при рассмотрении положения стрелки действия относительно оси релаксационного спектра. Рассматривая жидкость как упруго-вязкую максвелловскую среду, мы положением стрелки действия определяем, будут ли доминировать при отклике на приложенную механическую нагрузку упругие или вязкие компоненты. Этот переход от одной формы ответа к другой происходит примерно при условии 0 = т, где время молекулярной релаксации, определяемое формулой (П. 1), 0 —период колебаний (период действия силы) .  [c.95]

    Изложенное показывает, что ниже температуры стеклования трудно ожидать перестройки структуры, поскольку полимерные цепи практически неподвижны. Поэтому любая молекулярная ориентация, имеющаяся в стеклообразном состоянии, сохраняется практически неизменной до тех пор, пока полимер не нагревают до температуры стеклования. Замороженные деформации, присутствие которых приводит к анизотропии механических характеристик полимера в стеклообразном состоянии, являются следствием молекулярной ориентации, возникающей при деформации или течении полимеров при температуре, превышающей температуру стеклования. [c.68]

    Процесс наблюдается только в присутствии в полимере активного наполнителя. Для полимеров, указанных в табл. I. 1, время релаксации -процесса при 20 °С равно величине порядка 1 с. Отчетливо наблюдается соответствующий максимум механических потерь. Считается, что этот максимум связан с изменением сегментальной подвижности в адсорбционном (граничном) слое полимера, поэтому энергия активации данного процесса выше, чем процесса стеклования. -Процесс происходит без перестройки в целом сажевой структурной пространственной сетки, так как частицы сажи проявляют подвижность при более высоких температурах и больших временах наблюдения. [c.63]

    Если передвинуть стрелку действия по оси времен релаксации и температур в сторону больших т и, соответственно, меньЩих температур, поскольку г = В ехр(и/кТ), то тело, сохраняя жидкую структуру , станет твердым уже в обычных, а не в исключительных условиях. Помня об этом, мы можем определить стеклование как процесс затвердевания вещества без изменения геометрической структуры отправного состояния, а стек л ооб р а 3 н о е с о с т о я н и е — к а к состояние, имеющее геометрическую структуру жидкости и механические свойства твердого тела. [c.77]

    В отечественной литературе укоренилось подразделение типов стеклования на два структурное, связанное с переходом из высокоэластического или вязкотекучего в стеклообразное состояние, и механическое, связанное с превращением неупругого отклика системы в упругий в результате увеличения скорости [40, гл. I 41, с. 147—153] воздействия на нее. Дидактически объединение под одним словом стеклование столь разных вещей, как процесс, развивающийся в статических условиях, и отклик системы, переменный в динамических условиях, вряд ли можно считать удачным. Но так как термины структурное стеклование и механическое стеклование вошли в научный обиход, следует уточнить их. [c.81]


    Этому определению соответствует на правой части рис. II. 2 миграция стрелки действия от больших к малым т. Опыт со стрельбой по воде — типичнейший пример механического стеклования. Добиться этого же эффекта в полимерах, по понятным причинам, можно при гораздо меньших скоростях воздействия. [c.83]

    Механическое стеклование при периодическом нагружении полимера будет также рассмотрено в этой главе. [c.83]

    Структурное стеклование обнаруживается по изменению температурного хода статических физических свойств вещества (теплового расширения, теплоемкости, удельного объема и т. п.) в отсутствие частотных и других механических воздействий. Но прежде всего оно обнаруживается по возникновению твердости, регистрируемой любыми методами. [c.87]

    Концепция механического стеклования в том виде, как она здесь излагается, важна именно в том плане, что утверждает [c.96]

    Обычно механическое стеклование регистрируют по механиче ским потерям, физический смысл которых ввиду их резонансной природы может быть понят по аналогии с диэлектрическими потерями (ср. гл. VII), а формально они вводятся через комплексные динамические модули упругости. [c.97]

    Основное уравнение механического стеклования имеет следующий вид  [c.98]

    Некоторые физико-механические свойства частично замещенных бен-зиловых и других простых эфиров поливинилового спирта были характеризованы Ушаковым и Лаврентьевой. Для испытания были отлиты пленки и определялись их показатели (температура стеклования, механическая прочность). Температура стеклования Оензиловых эфиров определялась в ртутном дилатометре. В результате определений выяснилось, что по мере увеличения степени замещения температура стеклования снижается от 85° для чистого поливинилового спирта до 83° для эфира степени замещения 10 мол.% и до 13° для эфира замещения 80 мол.% (рпс. 115). [c.22]

    Реологические свойства (структурно-механические свойства, температура застывания, вязкость и др.) НДС зависят в первую очередь от ее физического состояния, на которое оказывает влияние соотношение энергий межмолекулярного взаимодействия и теплового движения. Нефтяные дисперсные системы могут находиться в трех физических состояниях вязкотекучем (жидком), высокоэластическом и твердом. Способность к вязкому течению таких продуктов, как битумы, пеки, используют для пх внутризаводского транспортирования по трубопроводам. Для НДС характерно высокоэластическое состояние в интервале между температурами стеклования и вязко текучестн (температуры размягчения). [c.18]

    При термодеструкцин в жидкой фазе устойчивость и структурно-механическая прочность системы также существенно изменяются, что обусловливает образование нефтяного кокса. При этом система проходит вязкотекучее и эластическое состояние и стадию стеклования. [c.166]

    Нестабильность струи вызвана развитием в потоке больших эластических деформаций в результате периодических (пульсирующих) изменений в объемном расходе полимерной жидкости Q или ориентации структурных элементов текущего пол-ймера в пристенных слоях, вследствие чего происходят уменьшение кинетической подвижности макромолекул и локальное проявление эффекта механического стеклования. [c.182]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    Некоторые методы переработки полимеров"рассчитаны на то, что формование надмолекулярных структур (структурирование) будет происходить непосредственно в самом процессе переработки. Примерами таких технологических процессов являются формование волокна и экструзионно-выдувное формование с предварительной вытяжкой. В первом примере волокно после фильерного формования для получения нужной структуры должно быть подвергнуто холодной вытяжке (см. разд. 3.7). Во втором примере характер ое время релаксации полимера при температуре формования должно быть достаточно велико, для того чтобы в материале до начала ох. лаждения сохранилась большая часть созданной в процессе формования двухосной ориентации. Таким свойством обладают аморфные полимеры при температуре, несколько превышающей температуру стеклования. Можно назвать эту способность структурируемостью она зависит как от реологических характеристик расплава полимера, так и от его механических свойств при Тд < Т < Г (. [c.615]

    На участках 1-7 и 8 - 14 в системе происходят структурные превращения, обусловливающие различие конфигураций элементов пространственной структуры, и соответственно проявление системой принципиально новых физико-механических и физико-химических свойств. Изменяется прочность структурных образований, химический состав, порядок расположения молекул, межмолекулярные силы взаимодействия и т.п. Например, можно предположить, что участок 1-3 включает зону упруго-хрупких (1-2) и упруго-пластичных (2-3) гелей. На участке 3-7 могуг проявляться зоны кинетически неустойчивого состояния золя (4-6) или кинетически устойчивого состояния (6-7). На участке 1 - 7 Moiyr проявляться эффекты плавления (зона 6-7), стеклования (зона 3-4). [c.63]

    Жгуты и ленты из указанных волокон помещаются в холодную пресс-форму и нагреваются на 30 С ниже температуры плавления связующего. Далее под давлением 1,38 МПа залхэтовка нагревается до температуры плавления связующего и вылержи-вается под этим давлением в течение 30 мин при использовании препрегов и 60 мин при изготовлении изделий методами намотки и плетения. Далее под давлением изделия охлаждаются (закаливаются) ниже температуры стеклования. Наиболее высокие механические свойства получены на однонаправленных препрегах. [c.556]

    Подвижность различных элементов структуры полимеров характеризуется временами релаксации в широком диапазоне от 10" ° с до 10 с, а соответствующие им релаксационные процессы наблюдаются методами релаксационной спектрометрии, например, при деформации полимеров под действием статических или переменных механических нагрузок или при воздействии электрических и магнитных (гл. VII, VIII) полей, а также в процессах стеклования (гл. II), течения (гл. V), диффузии и т. д. [c.58]

    Если структурное стеклование, при всех сделанных оговорках, представляет собой процесс, то механическое стеклование — это лишь изменение отклика системы на переменную нагрузку при увеличении частоты нагрузки. Наглядно механическое стеклование можно представить себе как псевдопроцесс затвердевания эластомера при постепенном и неограниченном увеличении частоты воздействия [40, гл. I 41, с. 147—153]. [c.83]

    Температуры структурного стеклования Тс и механического стеклования Тм. с независимы между собой, так как первая определяется скоростью охлаждения, а вторая — временным режимом механического воздействия (периода действия силы 0, частоты упругих колебаний v). Различие между Тс и Гм.с четко наблюдалось, например, при изучении температурной зависимости динамического модуля сдвига G или модуля одноосного сжатия Е. Характерная зависимость lg от температуры для полимера 11риведена на рис. П. 11. Ниже Гс полимер находится в стеклообразном состоянии и температурная зависимость Igf слабо выражена, как и у любого твердого тела вообще. Выше Гс логарифм модуля упругости изменяется с температурой несколько сильнее в связи С тем, что в структурно-жидком состоянии структура полимера изменяется с изменением температуры. При дальнейшем увеличении температуры, когда время релаксации снижается до величин, сравнимых с периодом колебаний, начинает возникать высокоэла-бтичёская деформация. С дальнейшим увеличением температуры амплитуда деформации полимера возрастает до предельного значения, а модуль упругости падает до весьма низкого значения (модуля высокоэластичности). Для полимеров модуль одноосного (жатия в стеклообразном состоянии Ео примерно в 10 —10 раз больше, чем соответствующий модуль Еж в высокоэластическом состоянии. [c.96]

    Переход от упругой деформации к высокоэластической у полимеров сопровождается возрастанием механических потерь и прохождением их через максимум (рис. II. 12). В соответствии с этим температура механического стеклования Ти. с определяется как температура, которой соответствует максимум механических потерь. Ее следует рассматривать как температуру, при которой практически перестает проявляться высокоэластичность.. Амплитуда деформации не влияет На Гм. с, так как по условию деформация достаточно мала. При больших напряжениях и деформациях у полимеров возникакзт качественно новые явления (вынужденноэластические деформации и разрушение). Закономерности, аналогичные представленным на рис. II. 11 и II. 12, наблюдаются, как было отмечено выше, при действии на полимеры переменных электрических полей. В этом случае роль модуля упругости играет диэлектрическая проницаемость, а механических потерь — диэлектрические потери. Электрические, поля действуют на те структурные [c.97]

    В соответствии с природой перехода полимера из высокоэла-стического деформационного состояния в упругое можно сформулировать следующие основные особенности механического стеклования  [c.98]


Смотреть страницы где упоминается термин Стеклование механическое: [c.46]    [c.130]    [c.537]    [c.539]    [c.584]    [c.216]    [c.49]    [c.512]    [c.95]    [c.98]    [c.98]   
Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень (1999) -- [ c.110 ]

Основные процессы переработки полимеров Теория и методы расчёта (1972) -- [ c.26 ]

Теоретические основы переработки полимеров (1977) -- [ c.36 ]

Акустические методы исследования полимеров (1973) -- [ c.102 ]

Химия и технология полимерных плёнок 1965 (1965) -- [ c.155 ]

Деформация полимеров (1973) -- [ c.54 ]

Расчеты и конструирование резиновых технических изделий и форм (1972) -- [ c.31 ]

Термомеханический анализ полимеров (1979) -- [ c.78 ]




ПОИСК







© 2025 chem21.info Реклама на сайте