Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нефтепродукты электрические свойства

    Электрические свойства зависят от содержания асфальто-смолистых веществ в нефти и с увеличением их содержания можно говорить и об электрической проводимости нефти. Величина удельной электропроводности (г, ом м ) нефтей изменяется в диапазоне 0,5 10 -0,5 10 газоконденсатов и светлых нефтепродуктов 10 °- 10 [ом- м]  [c.63]

    Всю совокупность свойств нефтепродуктов, определяющих их качество, К. К. Папок предложил разделить на три группы физико-химические, эксплуатационные и экологические [8, 18]. При этом к экологической группе отнесены стабильность нефтепродуктов при хранении, их пожароопасность и т. д. В работе [19] предложено делить свойства нефтепродуктов на такие три группы физико-химические, эксплуатационные и технические. К физи-ко-хнмическим относят свойства, характеризующие состояние нефтепродуктов и их состав (плотность, вязкость, теплоемкость, теплопроводность, поверхностное натяжение, электрическую проводимость, диэлектрическую проницаемость, элементный, фракционный и групповой углеводородный составы и др.). [c.10]


    Электропроводность жидкостей можно увеличить, вводя в них антистатические присадки. Наибольшее распространение как у нас в стране, так и за рубежом получили присадки, предотвращающие накопление зарядов статического электричества в нефтепродуктах. Их вводят в углеводороды в количестве, исчисляемом тысячными и десятитысячными долями процента. Не оказывая влияния на физико-химические и эксплуатационные свойства нефтепродуктов, они на несколько порядков снижают их удельное электрическое сопротивление.  [c.172]

    ЭЛЕКТРИЧЕСКИЕ СВОЙСТВА НЕФТЕПРОДУКТОВ [c.147]

    Существующие способы обезвоживания нефтепродуктов методами отстаивания, сепарации, фильтрации, обработки адсорбентами и цеолитами либо малоэффективны, либо малоприемлемы из-за массогабаритных и экономических показателей. Наибольшую трудность с точки зрения обезвоживания и обессоливания представляет собой электрообработка тяжелых топлив и масел, так как электрическая прочность этих материалов резко снижается при загрязнении и особенно при увлажнении. Под действием электрического поля частицы загрязнений или капельки воды образуют цепочки, через которые может происходить пробой межэлектродного промежутка. Очевидно, что эффективность электрообработки жидких углеводородных систем (горючесмазочных материалов) находится в зависимости от коллоидных свойств этих систем. Кроме того, определение загрязнений в диэлектрических жидкостях, особенно высокодисперсных, определение их дисперсного состава - сложная и еще недостаточно полно решенная задача. [c.40]

    Высота диэлектрических колец и промежутков между ними зависит от скорости движения нефтепродукта, его свойств и напряженности электрического поля. Для каждого технологического процесса можно подобрать оптимальное соотношение высоты колец и промежутков между ними. [c.424]

    К важнейшим показателям, характеризующим электрические свойства нефтепродуктов, относятся электропроводность, электровозбудимость, диэлектрическая проницаемость, диэлектрическая прочность и тангенс угла диэлектрических потерь. [c.93]

    Под электрическими свойствами нефтепродуктов обычно понимают явления, происходящие в них под воздействием электричества. [c.147]

    Описание аппаратуры и методики определения таких электрических свойств нефтей и нефтепродуктов, как диэлектрическая постоянная, электропроводность и пробиваемость, можно найти в специальных руководствах. [c.66]

    Электрические свойства нефти. Безводные нефть и нефтепродукты являются диэлектриками. Значение относительной диэлектрической постоянной (е) нефтепродуктов колеблется около двух, что в 3—4 раза меньше таких изоляторов, как стекло (е = 7), фарфор (е = 5—7), мрамор (е = 8—9). У безводных, чистых нефтепродуктов электропроводность совершенно ничтожна. Это свойство широко используется на практике. Так, твердые парафины применяются в электротехнической промышленности в качестве изолятора, а специальные нефтяные масла (трансформаторное, конденсаторное) для заливки трансформаторов, конденсаторов и другой аппаратуры в электро- и радиопромышленности. Высоковольтное изоляционное масло С-220 используется для наполнения кабелей высокого давления. Во всех перечисленных случаях нефтяные масла применяются для изоляции токонесущих частей и отчасти для отвода тепла. [c.81]


    Отработанные нефтепродукты являются, как правило, отходами потребления и включают отработанные моторные и индустриальные масла, а также смесь отработанных нефтепродуктов. Количество и качество отработанных масел в первую очередь зависит от организации сбора, качества исходного масла, оборудования и условий его эксплуатации. Масла в процессе использования загрязняются водой и пылью, продуктами коррозии при соприкосновении с металлами, продуктами окисления, образующимися при контакте с воздухом и под воздействием повышенных температур. Свойства масел ухудшаются под влиянием естественного света, давления, электрического поля и других факторов. Масла в процессе эксплуатации оборудования разжижаются топливом. [c.133]

    Флуоресценция почти полностью уничтожается действием на нефть азотной кислоты, галоидов или просто солнечных лучей. Предполагали, что флуоресценция нефтей зависит от взвешенных коллоидных частей — субмикронов. Однако сильный электрический ток 30 тыс. б, пропущенный через флуоресцирующий нефтепродукт, нисколько не уменьшил этого свойства. Зато из кислых гудронов были выделены вещества типа многокольчатых ароматических соединений — хризен и флуорен, которые, по-видимому, являются носителями флуоресценции, так как выделение их из нефтепродуктов уничтожает флуоресценцию, и, наоборот, при прибавлении их к растворителям получаются сильно флуоресцирующие растворы. Флуоресцирующие вещества образуются вновь при перегонке. Установлено также, что при перегонке с некоторым разложением получаются дистилляты с большей флуоресценцией, чем при работах с большим вакуумом .  [c.51]

    ПОВЕРХНОСТНОЕ НАТЯЖЕНИЕ. ЭЛЕКТРИЧЕСКИЕ И ОПТИЧЕСКИЕ СВОЙСТВА НЕФТЕЙ И НЕФТЕПРОДУКТОВ [c.142]

    Для автоматического контроля и регулирования качества сырья и продуктов целесообразно устанавливать на потоках следующие анализаторы состава и свойств нефтепродуктов на потоке сырья — вискозиметр (для контроля) на потоках раствора рафината, уходящего сверху экстракционной колонны, — вискозиметр, рефрактометр и колориметр (для контроля) на потоках асфальта и деасфальтизата — анализатор для автоматического регулирования температуры вспышки. При помощи электронной информационно-вычислительной машины (ИВМ) можно автоматизировать учетно-расчетные операции на установке по составлению материального баланса определению потерь, общего и удельного расходов реагентов, топлива, электроэнергии, пара и воды определению выхода продуктов и расчету других технико-экономических показателей, включая себестоимость продукции. Для этого необходимо на потоках сырья, пропана, топлива, воды на установку, асфальта и деасфальтизата установить объемные счетчики повышенной точности ( 0,1—0,2%) и датчики плотности с электрическим выходом на ИВМ. [c.317]

    Наличие ряда общих свойств у различных по своей природе эмульсий позволяет сделать вывод о возможности совместного применения электрических и магнитных полей в целях повышения эффективности процессов при транспортировке и хранении нефти и нефтепродуктов. На водонефтяную эмульсию воздействовали магнитным и электрическим полями напряженностью до 48 кА/м и 10 В/см соответственно так, чтобы их силовые линии скрещивались. При изучении механизма воздействия полей со скрещенными силовыми линиями отмечается переход от направленного, ориентированного под углом к вектору напряженности электрического поля, движения примесей и частиц нефти к движению хаотическому, которому соответствует напряженность магнитного поля тем ниже, чем выше напряженность электрического поля. Электромагнитная сила действует не на саму каплю нефти, а на окружающую ее проводящую среду. Ускорение движения частиц нефтепродукта при наложении таких полей является результатом действия гидродинамических сил, возникающих при движении жидкости около частицы вследствие ло- [c.55]

    Химическая коррозия. Это—самопроизвольное разрушение металлов при взаимодействии с внешней средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и не сопровождается электрическим током. Этот тип коррозии наблюдается при действии на металлы сухих газов и жидких неэлектролитов, т. е. в нашем случае при контакте сухих топлив, масел и газовой среды. Характерной особенностью химической коррозии (в отличие от электрохимической) является то обстоятельство, что продукты коррозии образуются непосредственно на участках поверхности, вступающих в реакцию. Дальнейший рост пленки зависит от возможности проникновения нефтепродуктов через эту защитную пленку. Переход нерастворимых продуктов коррозии в нефтепродукты определяется физикохимическими свойствами верхних слоев отложений. [c.106]


    Описанный процесс можно рассматривать как процесс фильтрации дисперсной фазы через систему сетчатых электродов. Основной задачей является определение количества остаточной воды в нефтепродукте на выходе фильтра. Объемная концентрация воды на выходе зависит от объемной концентрации на входе Ж , дисперсного состава эмульсии, напряженности электрического поля, от конструктивных параметров устройства и от физико-химических свойств эмульсии. [c.342]

    Однако полидисперсность топливных эмульсий не может служить ограничением для применения электрофореза в целях очистки обводненных нефтепродуктов. Электрические свойства эмульсий делают применение электрофореза дая разделения водно-то1шивных эмульсий перспективным и экономичным способом очистки топлив от вЬды и любых примесей. [c.20]

    Изучение прёссовых характеристик, объемной усадки, электрических свойств и реакционной способности нефтяного кокса из различных нефтепродуктов позволило установить взаимосвязь между этими свойствами и плотностью кокса. Хотя определяемая пикнометрическим методом плотность и не является истинной в прямом значении этого понятия, однако, как уже было сказано выше, этот показатель оказался весьма полезным при установлении связи между природой исходного сырья и основными свойствами получаемого из него кокса. [c.231]

    К важнейшим показателям, характеризующим электрические свойства нефти и нефтепродуктов, относятся электропроводность и электровозбудимость. Чистые нефтепродукты являются плохим проводником электрического тока, поэтому их применяют в качестве электроизолирующих материалов в производстве электрокабелей для трансформаторных подстанций. Электропроводность жидких нефтепродуктов зависит от содержания влаги, посторонних примесей и температуры. Поэтому при применении их втранс-форматорах требуется тщательное удаление воды (обезвоживание). [c.27]

    Главнейшими электрическими свойствами нефтепродуктов являются электронроволность, электровозбудимость, диэлектрическая постоянная и диэлектрическая прочность. [c.147]

    Кабели со слоистой оболочкой имеют жилы с полимерной изоляцией. В качестве полимерного материала может быть применен сплошной или ячеистый полиэтилен. Ячеистый (микропористый) полиэтилен представляет собой вспененный полиэтиленовый материал, имеющий другие электрические свойства, чем сплошной полиэтилен. Поры, образующиеся при вспенивании, иногда заполняют пластичным нефтепродуктом для предотвращения проникновения влаги и недопущения продольной во-допроницаемости. Эту конструкцию обматывают полимерными лентами и металлической лентой для экранирования. Лента может быть алюминиевой или медной она имеет полимерное покрытие. На металлический экран дополнительно наносят оболочку и защитное покрытие из полиэтилена методом экструзии. Кабели почтового ведомства ФРГ с полимерным покрытием снабжаются тисненой маркировкой. В отличие от поливинилхлорида на полиэтилене можно выполнять только выпуклое тиснение, поскольку выдавливание углублений приводит к возникновению внутренних напряжений, и материал может разрушиться в результате коррозионного растрескивания под напряжением. [c.300]

    Сухие (обезвоженные) нефти и нефтепродукты являются диэлектриками. Сопротивление, оказываемое сухими нефтями и нефтепродуктами электрическому току, чрезвычайно велико, и, следовательно, электропроводность их ничтожна. Эти свойства дают возможность применять некоторые нефтепродукты в качестве электроизоляционных материалов. Так, например, твердые парафины применяют в качестве изоляционных материалов в радиотехнике и др., а нефтяные масла (трансформаторное, конденсаторное и др.) используют для заливки трансформаторов, конденсаторов, масляных выключателей и реостатов. Однако следует учитывать, что электроизоляционные свойства масла при высоких напряжениях зависят от чистоты его уже самые незна-40 [c.40]

    Относительно электрических свойств иефти и углеводородов отметим только, что нефть и ее продукты являются диэлектрикам и. Электропроводилюсть их совершеппо ничтожна. На этом основано применение нефтяного парафина в качестве изоляционного материала в электротехнической нромышле1 пости, а также применение хорошо очищенного трансформаторного масла в трансформаторах и масляных выключателях в качестве изолирующей среды. Нефть и нефтепродукты как диэлектрики могут некоторое время сохранять на свое 1 поверхности заряды статического электричества, возникающего прп трении. Разряд этих зарядов может вызвать пожар от искры. [c.84]

    Важнейшими электрическими свойствами нефтепродуктов являются их электропроводность, электровозбудимость, диэлектрическая прочность и диэлектрическая постоянная. [c.20]

    Нефтепродукты способны удерживать в себе электрический заряд, возникающий при трении их о разные твердые тела. Эти свойства называются электровозбудимостью. [c.57]

    Электрические свойства нефти. Безводные нефть и нефтепродукты являются диэлектриками. Значение относительной диэлектрической постоянной е нефтепродуктов околи 2, что в 3—4 раза мень- [c.46]

    Электрические свойства нефти и нефтепродуктов. Безводная нефть, и нефтепродукты являются диэлектриками. Относительная диэлектрическая постоянная е нефтепродуктов ( 2) в 3-—4 раза меньше, чем таких изоляторов, как стекло, фарфор и мрамор. Твердые парафины специальной очистки применяют в электротехнической промышленности в качестве изоляторов, а трансформаторные и конденсаторные масла — для заливки трансформаторов, коиден-саторов и другой аппаратуры в электро- и радиопромышленности. Эти масла, а также изоляционное масло С-220 (для наполнения кабелей высокого напряжения), применяют для изоляции токонесущих частей и отчасти — для отвода тепла. [c.27]

    Возникающий при крекинге цвет нефтепродуктов связан с окислением и зависит от содержания сернистых соединений [741, 742]. Присутствие последних сказывается п па появлении тумана из водяных частиц, несущем окись серы и органические продукты окисления, подобные бензиновой смоле. Напоминаем, смолообразование сильно ускоряется ультрафиолетовым облучением — ртутными парами или электрической дугой [743—745]. Если существует подобное излучение, даже прямогонные бензины экстенсивно увеличивают смолообразование. Минимальную степень окисления, инициированного светом, опознают по изменению величины поверхностного натяжения в воде [746]. Качественные признаки сочетания инициированного светом окисления с изменением цвета легко обнаруживаются. Вязкие фракции и нетро-латумы, подвергнутые облучению светом и воздействию воздуха, часто в прогрессирующей степени темнеют, причем потемнение уменьшается вниз от поверхности жидкости. Плохо очищенные твердые парафины при облучении светом также значительно быстрее темнеют и ухудшают свои свойства. [c.150]

    Одним из наиболее ранних применений бесшумного электрического разряда в Европе было приготовление масел и масляных присадок. Смеси нефтяных масляных фракций и фракций жирного ряда подвергались воздействию разряда в атмосфере водорода. Целью процесса было улучшение свойств нефтепродуктов относительно антиокислительной стабильности и вязкостно-температурного коэффициента. Процесс известен под названием электрический или УоиоЬ процесс. См. [751—755]. [c.151]

    Температурные пределы применения и эксплуатации битумных эмалей определяются температурой размягчения битума по К и Ш, а также типом и количеством наполнителя. Температура применения промышленных битумных эмалей от —20 до +60 °С. Покрытия из каменноугольных эмалей обладают более высокими защитными свойствами. Они биостойки (следовательно, не требуется вводить в их состав фунгициды), химически стойки в водных растворах солей, содержащихся в почве, и нерастворимы в нефтепродуктах. Водопоглощение каменноугольных эмалей после 6 лет хранения в воде не превышает 0,6% (по массе), а электрическое сопротивление поле 5 лет эксплуатации во влажном грунте сохраняется первоначальным (ЫО Ом/м ), в то время как у покрытий из битумных эмалей оно снижается до ЫО Ом/м2. [c.87]

    Нефть и нефтепродукты также являются плохими проводниками электрического тока, поэтому их применяют в качестве электроизолирующих материалов. Одним из характерных свойств нефтепродуктов является их эпектровозбудимость, т.е. их способность удерживать электрический заряд, возникающий при трении о стенки трубопроводов и резервуаров. При накоплении электрических зарядов возникает так называемое статическое электричество, которое при разряде может привести к воспламенению продукта. Для отвода электрических зарядов производят заземление оборудования. [c.71]

    Электровозбудимость - свойство нефтепродуктов (как и всех диэлектриков) накапливать и удерживать статический электрический заряд, возникающий от трения при их движении. Величина такого заряда может достигать сотни вольт, и это может стать причиной взрыва или пожара, если от этого заряда возникнет искра в паровоздушной среде. [c.148]

    Коррозионность ракетных топлив и нефтепродуктов не является абсолютной величиной и изменяется в зависимости от свойств веществ, с которыми контактируют топлива, и от внешних условий, в которых происходит это контактирование. Оценку коррозионности топлив проводят, как правило, только но отношению к материалам, с которыми топливо должно контактировать в процессе хранения, транспортирования и применения. Чтобы оценить коррозионное действие топлива на данный материал, необходимо выбрать соответствующие условия испытания и метод определения величины коррозии. Коррозия чаще всего определяется потерей веса образцов материала, контактирующего с топливом (в ч). Кроме этого, она может определяться глубиной разъедания металла (в мм1год), изменением механических свойств металла, изменением электрического сопротивления образцов металла и целым рядом других показателей. [c.253]


Смотреть страницы где упоминается термин Нефтепродукты электрические свойства: [c.5]    [c.47]    [c.141]    [c.161]    [c.2]    [c.583]   
Технология переработки нефти и газа (1966) -- [ c.31 , c.32 ]

Общие свойства и первичные методы переработки нефти и газа Издание 3 Часть 1 (1972) -- [ c.93 ]




ПОИСК





Смотрите так же термины и статьи:

Электрические свойства



© 2025 chem21.info Реклама на сайте