Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Воспламенение химических продуктов

    Температура воспламенения — температура горючего вещества, при которой оно выделяет горючие пары и газы с такой скоростью, что после воспламенения их от источника зажигания возникает устойчивое горение. Температуру воспламенения используют при установлении степени горючести веществ, оценке пожарной опасности оборудования и технологических процессов, связанных с переработкой веществ, и определяют для жидких нефтепродуктов и химических органических продуктов по ГОСТ 12.1.021—80, масел и темных нефтепродуктов — по ГОСТ 4333—48. [c.11]


    По источникам инициирования взрыва рассмотренные аварии можно распределить следующим образом воспламенение химических продуктов (25 /о) искрение электрооборудования и разряды статического электричества (23,0%) открытый огонь и раскаленные продукты, в технологической аппаратуре (23,8%) открытый огонь при автогенных и сварочных работах (5,4%) искрение от ударов твердыми предметами (13,6%) перегрев реакционной массы и превышение давления газов в закрытой аппаратуре от неуправляемых процессов (9,2%). [c.337]

    Температуры вспышки и воспламенения характеризуют степень огнестойкости испытуемого продукта. В зависимости от содержания легко испаряющихся веществ температура вспышки химического продукта может колебаться в широком интервале от —30 до +300° С. Особую опасность в пожарном отношении представляют легколетучие растворители. Для растительных масел температуры вспышки довольно высоки (порядка 240—280°С), а для олиф (за исключением натуральных) значительно ниже (порядка 33—35°С), так как в их состав входит растворитель (уайт-спирит). Температуру вспышки растительных масел определяют в закрытом тигле по методу, принятому в действующем стандарте , с применением лабораторного аппарата для определения температуры вспышки нефтепродуктов и продуктов химических органических в закрытом тигле. [c.64]

    Причиной больщинства крупных производственных аварий является применение горючих и токсичных химических продуктов. Результатом воздействия горючих (и легковоспламеняющихся) веществ могут быть пожары без опасности взрыва (длительное воздействие высоких уровней теплового излучения и дымов) угроза технологическому оборудованию, содержащему опасные вещества (опасность распространения огня, взрыва или выброса токсичных веществ) взрывы (опасность от взрывной волны, летящих обломков, а также высокие уровни теплового излучения). Чрезвычайные ситуации, связанные с токсичными веществами, проявляются в медленном или перемежающемся по характеру газовом выбросе или сбросе жидкого вещества угрозе воспламенения пожароопасного технологического оборудования или его перегрева и опасности нарущения герметичности быстром выбросе вещества (опасность образования и быстрого распространения токсичного облака) массированном выбросе вещества при разрушении крупных технологических емкостей либо в случае отказа систем безопасности при неуправляемых химических реакциях. [c.158]


    Смесь горючего исходного материала с окислителем в определенном соотношении, необходимом для осуществления процесса горения с учетом получения заданного продукта, называется горючей смесью. Полученные продукты при осуществлении этих окислительных реакций называются продуктами сгорания. Системная теория печей рассматривает проблемы промышленного оформления процессов безопасного сжигания исходных горючих материалов на базе современной теории горения. Она рассматривает вопросы создания с помощью аэродинамических приемов оптимальных условий для управления процессами сжигания с заданной скоростью, температурой и с получением пламени необходимой геометрической формы, определяющих способ взаимодействия горючего и окислителя и обусловливающих вид процесса сжигания. Она рассматривает возникающие взаимосвязи при горении исходных материалов, совместимость протекания реакции горения топлива с целевыми химическими реакциями в одном объеме, особенности химического взаимодействия между реагентами при химико-технологическом сжигании. Протекание процесса сжигания исходных горючих материалов рассматривается совместно с теплотехническими процессами. Для протекания реакции горения исходных горючих материалов необходимы смесеобразование, организация воспламенения смеси, обеспечение условий распространения пламени и устойчивости горения. [c.29]

    Область воспламенения газов и паров в воздухе (ГОСТ 13919—68) температурные пределы воспламенения паров в воздухе (ГОСТ 13922- —68) температура вспышки для химических продуктов (ГОСТ 13921—68), нефтепродуктов (ГОСТ 6396—68 и ГОСТ 4333—48) температура воспламенения для химических продуктов (ГОСТ 13921—68), нефтепродуктов (ГОСТ 4333—48), нефтепродуктов (ГОСТ 13920-68). [c.358]

    ВОСПЛАМЕНЕНИЕ ХИМИЧЕСКИХ ПРОДУКТОВ [c.337]

    Случаи воспламенения химических продуктов (органических красителей и полупродуктов) происходили при ведении процесса сушки вследствие неправильного выбора теплоносителя. Поэтому при сушке продуктов, имеющих низкую температуру воспламенения, важнейшим условием является правильный выбор теплоносителя, температура которого не должна превышать опасных пределов. Форма, размеры и материал оборудования должны быть такими, чтобы на их стенки не налипали органические продукты, так как это может привести к локальным перегревам и воспламенению. Горючие вещества могут воспламениться при воздействии на них концентрированных азотной и серной кислот активные щелочные металлы (натрий и калий) могут воспламениться при воздействии на них воды. Такие металлы нужно хранить в герметичной таре. [c.338]

    Температура воспламенения для химических продуктов определяется в приборе ТВ ВНИИПО по ГОСТ 13921—68, нефтепродуктов — в приборе Бренкена ГОСТ 1369—42 по методике ГОСТ 4333—48. Испытания проводят так же, как при определении температуры вспышки. За температуру воспламенения принимают приведенную к давлению 760 мм рт. ст. температуру жидкости, прн которой наблюдается первое воспламенение жидкости с последующим самостоятельным горением в течение 5 сек илн более. [c.310]

    Сжатие и нагрев несгоревших газов ударной волной привадит к воспламенению. В этом случае во взрывной зоне в свою очередь выделяется большое количество тепла, которого почти достаточно для того, чтобы поддержать стационарную ударную волну. Если допустить, что между концом ударного фронта и началом взрывной волны имеется небольшая зона, где не идет никакой реакции, то газы в этой области будут более горячими, чем несжатые газы, и более плотными в результате большого давления. Следовательно, их локальная поверхностная скорость относительно ударного фронта меньше, чем скорость несжатых газов перед фронтом. Последующая химическая реакция, хотя и нагревает газы, по они сохраняют более высокую плотность, а следовательно, и более низкую скорость по сравнению с несгоревшими газами. Таким образом, относительно фронта детонации продукты горения удаляются с объемной скоростью, меньшей, чем скорость несгоревших газов. Это противоположно положению для обычной волны горения. Профиль одномерной детонационной волны схематично изображен на рис. XIV. . [c.405]

    В результате каждая из указанных причин воспламенения в конечном итоге приводит к первой и основной при крупном пожаре—непосредственному воздействию пламени. Именно при действии пламени или раскаленных предметов (например, открытые нагреватели электрических плиток) загорание происходит, если источник нагрева оказывается вблизи легко воспламеняющихся жидкостей или горючих газов. Реже возникает загорание при соприкосновении пламени с другими горючими веществами и предметами. Все другие перечисленные выше причины загораний в условиях лабораторий также представляют опасность при наличии легко воспламеняющихся жидкостей, огнеопасных твердых веществ или горючих газов. Ничтожное количество тепла, выделяющееся, например, при образовании искры, достаточно для загорания легко воспламеняющихся веществ, дальнейшее горение которых будет продолжаться без введения тепла извне от той же причины возможен взрыв некоторых газовых смесей с последующим загоранием окружающих предметов и находящихся поблизости химических продуктов. [c.76]


    Температуры вспышки и воспламенения характеризуют степень огнестойкости испытуемого продукта. В зависимости от содержания легко испаряющихся вешеств температура вспышки химического продукта может колебаться в широком интервале от —30 до + 300°С. Особую опасность в пожарном отношении [c.56]

    Источники воспламенения в условиях производства весьма разнообразны как по своему появлению, так и по параметрам. Наиболее вероятными являются открытый огонь и раскаленные продукты горения нагретые до высокой температуры поверхности технологического оборудования тепловое проявление механической и электрической энергии тепловое воздействие химических реакций. Источниками воспламенения могут быть разнообразные технологические нагревательные печи, реакторы огневого действия, регенераторы, в которых выжигают органические вещества из негорючих катализаторов, печи и установки для сжигания н утилизации отходов, факельные устройства для сжигания побочных и попутных газов и др. Основной мерой пожарной защиты от подобных источников воспламенения является исключение возможного контакта с ними горючих паров и газов, образовавшихся при авариях и повреждениях. Поэтому аппараты огневого действия располагают на безопасном от смежных аппаратов удалении или изолируют их, размещая в закрытых сооружениях и помещениях. В случае невозможности выполнения подобной рекомендации предусматривают автоматически действующие системы контроля аварийных ситуаций (газовый анализ среды) и установки блокирования открытых источников воспламенения. [c.83]

    Наиболее общее свойство горения — возможность при определенных условиях прогрессивного самоускорения химического превращения — воспламенения, связанного с накоплением в реагирующей системе теплоты или активных продуктов цепной реакции. [c.32]

    Затрагиваемая автором проблема знаний об опасностях, реализуемых при авариях современных промышленных предприятий, и умения грамотно действовать при защите населения и персонала, ликвидации их последствий актуальна и для нашей страны. Сущность проблемы заключается в том, что в условиях вовлечения в хозяйственную деятельность тысяч новых веществ, постоянной смены технологий такие знания (и разрабатываемую на их основе тактику действий в экстремальных ситуациях) можно получить путем лишь научных исследований, но не на основе чисто практического опыта. В качестве примеров для разбираемого в этой главе класса аварий -крупных пожаров укажем лишь на такие опасности (помимо отмеченных автором опасностей технологии сжиженных газов), как формирование огневых шаров жидких углеводородных топлив при вскипании продукта в резервуаре хранения при его горении (время возникновения - от 7 мин до 2 ч после воспламенения, поражаемая площадь - до 10 тыс. м ) усиление воздушных ударных волн, проходящих над горящими разлитиями топлив (коэффициент усиления от 2 до 10) развитие в ходе крупного пожара неконтролируемых химических реакций с образованием токсичных веществ (возможен широкий спектр поражающего действия). Каждое из отмеченных явлений для организации эффективного противодействия требует экспериментального и теоретического изучения, целенаправленного обучения личного состава и оснащения подразделений специальной техникой, прежде всего диагностической. Пока что и крупные аварии (например, авария 26 апреля 1986 г. на Чернобыльской АЭС), и более мелкие происшествия (например, авария 26 февраля 1988 г. в Чимкенте) свидетельствуют о нерешенности перечисленных вопросов. - Прим. ред. [c.208]

    Еще больший температурный запас относительно температуры самовоспламенения принимают, когда высокая температура создается не на поверхности, а в оборудовании, например, при химическом взаимодействии веществ, при наличии теплового источника в самом аппарате. В этом случае резко снижается теплоотдача, и условия теплового самоускорения реакции становятся более благоприятными. Поэтому для перехода к режиму нестационарного прогрессивного самоускорения реакции и воспламенения продуктов требуется нагрев до гораздо менее высокой температуры, чем при самовоспламенении горючей смеси от нагретой поверхности. [c.203]

    Некоторые горючие вещества при нагревании загораются при весьма низких температурах. Так, смеси сероуглерода п диэтилового эфира с воздухом воспламеняются при температурах 180—200 °С. Это связано с особенностями цепного механизма реакции и возникновением холодного пламени. При длительном контакте нагретого тела с горючей смесью в ней возникает медленная химическая реакция. При этом образуются и накапливаются сравнительно долгоживущие активные промежуточные продукты, происходит близкое к изотермическому (т. е. без изменения температуры) самоускорение реакции. В достаточно благоприятных условиях цепное самоускорение реакции может стать настолько значительным, что она перестает быть изотермической, и происходит тепловое воспламенение. [c.203]

    Непосредственно после химического взаимодействия продукты реакции несут на себе большой запас энергии, полученный за счет теплоты экзотермического превращения и первоначально затраченной энергии активации. Эта энергия в одних случаях может рассеиваться в окружающем пространстве при соударениях молекул или в результате излучения и расходуется на разогрев реагирующей среды. Такой случай и был рассмотрен при описании теплового воспламенения. [c.24]

    Долгое время, когда уже производили простейшую переработку нефти, выделяя пз нее в перегонных кубах отдельные фракции, углеводороды считали химически инертными веществами. При высокой температуре они, конечно, разлагались и сгорали, но ниже температур разложения и воспламенения углеводороды рассматривались как весьма устойчивые соединения, и казалось не реальным производство из них каких-либо полезных продуктов. Поэтому некоторые химики считали, что природные нефтяные углеводороды — это, образно выражаясь, химические мертвецы . [c.321]

    ЛЛ. Воспламенение топлив Воспламенение или самовоспламенение топлив - комплекс сложных физико-химических превращений, обеспечивающий резкое ускорение экзотермических реакций, возникновение пламени и образование активных продуктов с прогрессивным саморазогревом системы. Воспламенение предшествует собственно горению топлива, являясь его первой стадией. Воспламенение происходит только в парообразной смеси горючего и окислителя, при определенном их соотношении и накоплении в горючей смеси определенного количества активных промежуточных продуктов. [c.35]

    Аппаратура и осуществление пневматического перемешивания несложны, однако этот способ имеет следующие недостатки сравнительно большой расход энергии на подачу газа (воздуха) большие потери в случаях, когда перемешиванию подвергаются легкие продукты возможность химического воздействия агента на перемешиваемый продукт (например, окисление воздухом) кроме того, при энергичном перемешивании воздухом нефтепродуктов создаются условия для образования и накопления статического электричества, что может привести к взрыву или воспламенению продукта. Пневматический способ имеет ограниченное применение и все более вытесняется другими методами. [c.240]

    При исследовании пожарной опасности технологических материалов, которыми на производстве могут быть сырье, готовые продукты, промежуточные продукты, вспомогательные материалы (катализаторы, растворители и т. п.), побочные продукты и отходы, необходимо для каждого из них установить основные показатели пожарной опасности (горючесть, воспламеняемость, взрывоопасность, температуру вспышки, концентрационные пределы воспламенения), а также физико-химические свойства, влияющие на условия возникновения и развития пожара в конкретных условиях производства (при рабочих температурах, давлениях и т. п.). Сведения о пожарной опасности материалов должны быть указаны в стандартах и технических условиях на вещества и материалы. Они могут быть определены также по справочникам или информационным материалам, расчетом или экспериментально по стандартным методикам. [c.35]

    Физические явления, подготавливающие и сопровождающие процессы воспламенения и горения, весьма сложны. Горелка и топочная камера реализуют непрерывные поточные процессы, в которых участвуют потоки топлива, окислителя и топочных газов. В большинстве случаев количество окислителя и соответственно продуктов горения значительно превышает количество горючего. Газовоздушный поток, проходя эти устройства, подчиняется законам аэродинамики. Вследствие неоднородности поля температур аэродинамические явления осложняются теплообменом, а вследствие наличия в этом иоле источников газообразования и тепловыделения — и соответствующими физико-химическими процессами. Таким образом, в топочном устройстве приходится иметь дело со сложными полями скоростей, концентраций и температур, с источниками и стоками, что крайне трудно поддается сколько-нибудь точному математическому описанию. Все указанные стороны процесса взаимосвязаны и воздействуют друг на друга. [c.7]

    Эксплуатация химических предприятий неизбежно связана с постоянным проведением ремонтно-восстановительных работ изнашивающегося оборудования, зданий и сооружений. При ремонтах приходится применять газовую электросварку, кислородную резку, пайку, лужение, заливку антифрикционных сплавов, выжигание отложений и покрытий, разогрев битума и пека, а также выполнять различные работы, связанные с холодной обработкой металла, при которых возможно искрение и сильный разогрев обрабатываемых деталей. Все эти работы, как правило, проводят в специально отведенных местах, чтобы исключить воспламенение горючих продуктов от технологических установок. Однако электро- и газосварочные работы сравнительно часто приходится вести на действующих взрывоопасных технологических установках, что сопряжено с большими опасностями. Большое число загораний связано именно с проведением разовых электро-газосварочпых работ и недооценкой их опасности. [c.382]

    Если на обследуемом объекте или его аналогах происходили отказы, то проводят анализ соответствующей технической документации, обращая внимание при этом на следующие данные дата и время разрушения стадия технологической операции, когда произошло разрушение температура и влажность окружающей среды степень и последствия разрушения вид, назначение и размеры объекта наличие на нем заводской или монтажной маркировки срок службы к моменту разрушения состояние поврежденного объекта расстояние, на которое отброшены куски металла, и размер зоны теплового воздействия при воспламенении рабочего продукта размещение примыкающих деталей и фотодокументация места повреждения. Химический состав, термообработка и механические свойства материала конструкции технология ее сооружения, сварка, термообработка и контроль качества в процессе монтажных работ. Состав, давление, температура, скорость и влажность коррозионной среды. Величина постоянных и переменных напряжений, частота их изменения, вид напряженного состояния, ориентация главных нормальных напряжений. Планируемые условия эксплуатации и отклонения от них в процессе работы и непосредственно перед повреждением объекта, акты освидетельствований и сведения о ремонтах. При этом учитывается информация монтажной и технологической документации, обслуживающего объект персонала и информация о прежних подобных повреждениях. В процессе анализа проводят контрольную проверку каждого наблюдения относительно истории повреждения конструкции и отмечают все противоречия, так как часто именно они позволяют найти главную причину повреждения. Значи- [c.217]

    Двухступенчатая циклонная печь, разработанная ВНИИПК-нефтехимом, отличается от обычных циклонных топок раздельным сжиганием в разных камерах подсвечивающего топлива и токсичных газов. Это позволяет полностью сжечь подсвечивающее топливо в оптимальных условиях, обеспечить наличие высокотемпературных центров воспламенения, создать оптимальные условия для эффективного тепло- и массообмена (рис. 89). В первой ступени печи циклонно-вихревым способом сжигается топливо. Через пережим 6 продукты сгорания (1700—1900 °С) поступают во вторую ступень, куда через тангенциальные сопла подаются газы окисления. Эти газы попадают в кольцевое пространство между раскаленной футеровкой и высокотемпературным потоком продуктов сгорания из первой ступени. Как отмечают разработчики, содержание остаточных органических веществ в отходящих из печи газах соответствует ПДК для территории нефтеперерабатывающих заводов, и эти газы меньше загрязняют атмосферу, чем дымовые газы ряда паровых котлов ТЭЦ (где допускается химический недожог топлива до 100 мг органических веществ на 1 м дымовых газов) [211]. [c.144]

    ГОСТ 12.1.021—80 ССБТ. Пожарная безопасность. Метод определения температуры вспышки в открытом тигле и температуры воспламенения . Распространяется на жидкие и плавящиеся твердые химические органические продукты, нефтепродукты, а также их смеси и водные растворы. Не распространяется на масла, темные нефтепродукты и на взрывчатые, полимеризующиеся в условиях испытаний, быстро окисляющиеся на воздухе вещества, а также на вещества, температура разложения которых меньше температуры вспышки. [c.110]

    Продолжительность периода задержки воспламенения и температура самовоспламенения дизельного топлива зависят прежде всего от его химического состава. А.пкановы углеводороды, будучи менее термически устойчивыми, быстро претерпевают процесс распада с образованием перекисей и других продуктов неполного окисления, имеющих низкую температуру самовоспламенения. У ароматических углеводородов это произойдет лишь после того, как выделится водород, для чего необходимы более высокая температура и больший промежуток времени. [c.65]

    Наиболее существенное эксплуатационное свойство дизельных топлив — их способность быстро воспламеняться и плавно сгорать, что обеспечивает нормальное нарастание давления и мягкую работу двигателя без стуков. Воспламенительные свойства топлив зависят от их химического и фракционного состава. Очевидно, что это, в первую очередь, связано с температурой самовоспламенения компонентов топлива. Известно, например, что ароматические углеводороды имеют очень высокие температуры воспламенения (500—600°С). Ясно, что сильноароматизованные продукты неприемлемы в качестве дизельного топлива. Наоборот, парафиновые углеводороды имеют самые низкие температуры самовоспламенения, и. дизельные топлива из парафинистых нефтей обладают хорошими эксплуатационными свойствами. [c.93]

    В самом начале XX века в качестве химической очищающей жидкости повсеместно применялся газолин- Это относится во всяком случае к Соединенным Штатам Америки. Пожарная опасность, связанная с использованием газолина, была, конечно, чрезвычайно высока. Поэтому министерство торговли США издало в марте 1928 года коммерческую спецификацию, в соответствии с которой минимальная точка воспламенения растворителей для химической чистки, являющихся продуктами перегонки нефти, была установлена в 100° по Фаренгейту . В США преобладающая часть общего объема работ по химической чистке выполняется при помощи этого растворителя, которому присвоено название стод-дард . [c.6]

    Особенно важным для расшифровки механизма образования детонации в двигателе явилось, по мнению некоторых исследователей, представление, неявным образом содержавшееся в концепции М. Б. Неймана, о возможной связи между скоростью сгорания смеси ири низкотемпературном воспламенении и количеством органических нерекисей, накапливающихся в предшествующей холоднонламенной стадип. Действительно, так как органическим перекисям всегда приписывались особые активные свойства (например, способность легко распадаться с образованием свободных радикалов), то казалось естественным предположить, что чем больше самих перекисей или продуктов их распада будет произведено холодным пламенем, тем с большей скоростью будет осущест1 ляться как последующее окисление непрореагировавшего углеводорода, так и пламенное его сгорание при окончательном низкотемпературном воспламенении. А как мы сейчас увидим, именно эта последняя возможность резкого увеличения скорости сгорания смеси при воспламенепия явилась центральным пунктом сложившейся в это время химической теории детонации. [c.178]

    Установлены, несмотря на имеющиеся и существенные отличия во влиянии ЗГ на процессы термолиза и горения, общие для различных по химическому составу ЗГ, закономерности значительное снижение характерных температур термолиза (Тн, Тк, Тп,ах) и уменьшение температурного интервала деструкции, что приводит к выделению основных продуктов деструкции при температурах более низких, чем температуры воспламенения (350°С) и самовоспламенения (400°С) формирование коксового остатка (КО) начинается при меньших температурах и возрастает его выход, что уменьпшет выделение летучих продуктов изменяется состав летучих продуктов, увеличивается выход воды и снижается выделение СО (в 3-20 раз) и СО2 ( 2 раза) снижается энергия активации термодеструкции, что уменьшает вероятность протекания процессов деполимеризации снижа- [c.122]

    Графики а, б и в на рис. 5-25 относятся к сечениям топки, совпадающим с осью абсцисс, на которой отмечены точки отбора проб продуктов сгорания при помощи газозаборной трубки. По оси ординат отложены локальные значения потери тепла от химического недожога <7з и коэффициента избытка воздуха а. Как видно из графика а, кривая / в сечении первого лючка имеет специфичную для двухфронтового воспламенения резкую неравномерность. За коническим стабилизатором существует центральная зона рециркуляции и поэтому здесь происходит практически полное горение. В противоположность этому на удалении 200—300 мм от оси горелки имеет место химический недожог до 45%, который свидетельствует о том, что в этих местах локализуется ядро факела (область невоспламененной газовоздушной смеси). Ближе к стенкам туннеля, где существует периферийная зона рециркуляции продуктов сгорания, снова регистрируется падение химического недожога практически до нуля. Кривая II дает представление [c.105]

    Окисление при высоких температурах. Пламенное окисление приводит к полному сгоранию всех алканов до СОз и воды. Эта реакция наиболее широко используется в энергетических, но не в химических целях. Такое сгорание происходит в двигателях всех типов. Окисление начинается уже при предпламенных температурах и пдет по типу разветвляюш ихся цепных реакций (см. ч. II, Свободные радикалы ), В первой фазе окисления углеводорода RH в качестве малоустойчивых промежуточных продуктов образуются гидроперекиси ROOH, рас-падаюш иеся с образованием альдегидов, кетонов, спиртов, кислот, а также мимолетно существующих в реакционной зоне свободных радикалов R , В двигателе внутреннего сгорания при сжатии смеси паров бензина воздухом нормальные углеводороды образуют перекиси, вызывающие преждевременное воспламенение, т. е. воспламенение без участия запальной свечи, дающей искру только в момент наибольшего сжатия поршнем смеси газов. Явление это называется детонацией и причиняет вред, так как способствует изнашиванию двигателя и не позволяет полностью использовать его мощность. [c.69]


Смотреть страницы где упоминается термин Воспламенение химических продуктов: [c.309]    [c.110]    [c.149]    [c.143]    [c.270]    [c.94]   
Смотреть главы в:

Аварии в химических производствах и меры их предупреждения -> Воспламенение химических продуктов

Аварии в химических производствах и меры их предупреждения -> Воспламенение химических продуктов




ПОИСК







© 2024 chem21.info Реклама на сайте