Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция ориентированная

    Наряду с мылами, молекулы которых распадаются в водных растворах на ионы, существуют так называемые неионные мыла, т. е. мыла с молекулами, неспособными к ионизации. Молекулы таких мыл обычно состоят из длинной углеводородной цепочки с несколькими полярными (гидроксильными или эфирными), но неионогенными группами на конце, обуславливающими растворимость этих мыл. Эмульгирующее и стабилизирующее действие неионных мыл, вероятно, обусловлено тем, что их молекулы при адсорбции, ориентируясь полярными группами в воду, обуславливают возникновение вокруг капельки достаточно толстой гидратной оболочки. Согласно другому объяснению, стабилизирующее действие неионных мыл заключается в образовании на поверхности частиц соль-ватированного двухмерного геля, являющегося структурно-механи-ческим барьером, препятствующим слипанию частиц при столкновении. [c.352]


    Адсорбция полярных молекул на поверхностях, имеющих электрические заряды. Прн адсорбции полярных молекул на адсорбенте, имеющем на поверхности ионы или диполи, возникает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферически расположенными диполями (например, молекулы воды и аммиака), они ориентируются в электростатическом поле адсорбента. Возникает так называемое ориентационное кулоновское взаимодейст- [c.495]

    Молекулы полярных веществ при адсорбции ориентируются, и вблизи поверхности раздела фаз появляется двойной электрический слой, обкладки которого образованы концами дипольных молекул, обладающими зарядами одинакового знака (рис. 12.2, б). [c.230]

    Если органическое вещество обладает дипольным моментом и при адсорбции ориентируется таким образом, что нормальная к поверхности составляющая дипольного момента не равна нулю, то вместо выражения (27.7) для работы по полному замещению воды в двойном слое молекулами органического вещества получаем [c.136]

    В отличие от полярных молекул спиртов, кислот и т. п., которые при адсорбции ориентированы определенным образом, молекулы парафиновых углеводородов с почти одинаковой легкостью могут адсорбироваться за счет любого одного или нескольких углеродных атомов. В зависимости от того, за счет каких атомов произошла адсорбция, могут получиться и различные продукты реакции. [c.224]

    Значительное расширение ассортимента нефтепродуктов и дальнейшее повышение требовании к их качеству в связи с интенсивным развитием техники обусловили необходимость использования широкой гаммы процессов химичесК(ЗЙ технологии при переработке нефти и газа имеются в виду такие процессы, как ректификация, абсорбция, экстракция, адсорбция, сушка, отстаивание, фильтрование, центрифугирование и др., а также различные химические и каталитические процессы пиролиз, каталитический крекинг, риформинг, гидроочистка и др. Это позволило ориентировать нефтегазопереработку на обеспечение народного хозяйства не только топливом, маслами и другими товарными продуктами, но и дешевым сырьем для химической и нефтехимической отраслей промышленности, производящих различные синте тические продукты пластические массы, синтетические каучуки, химические волокна, спирты, синтетические масла и др. [c.7]

    Что касается введения в качестве ингибиторов добавок молекулярного типа, то их эффективность зависит от того, как ориентируются диполи в двойном слое. Если молекулы при адсорбции ориентируются положительными концами в сторону металла, возникает положительный адсорбционный скачок потенциала, повышается перенапряжение водорода и уменьшается коррозия. Если же они ориентируются таким образом, что к металлу обращены их отрицательные концы, возникает отрицательный адсорбционный скачок потенциала, который должен наподобие добавки анионного типа снижать перенапряжение водорода. При использовании добавок молекулярного типа эффекты экранирования или снижения напряженности электрического поля, благодаря увеличению толщины двойного слоя, могут иногда быть значительными. В результате эффект, возникающий от определенной ориентации ингибитора в двойном слое, может быть перекрыт. В связи с этим молекулярные добавки, ориентированные своим отрицательным концом в сторону металла, могут оказаться также хорошими ингибиторами. [c.119]


    В наших работах было показано далее, что молекулы ароматических углеводородов бензола, толуола и нафталина при адсорбции ориентируются плоскостью ароматических ядер параллельно поверхности адсорбента [4]. [c.39]

    С изменением гидрофильно-гидрофобного баланса оксиэтилированных продуктов возможна переориентация молекул ПАВ при адсорбции на твердых телах. Так, оксиэтилированный алкилфенол с длинной гидрофильной цепью, в противоположность низкомолекулярным образцам, при адсорбции ориентируется полярной группой в водную фазу ввиду все более увеличивающегося сродства с нею, вызывая гидрофилизацию поверхности кварцевого песка и глины [198]. [c.85]

    Помимо величины адсорбции и силы связи между молекулами адсорбата и адсорбента определенное влияние на эффективность противоизносного действия присадок оказывают также характер ориентации молекул в адсорбированном слое и плотность упаковки последнего. Считается, что молекулы ПАВ могут ориентироваться в граничном слое не только перпендикулярно, но и параллельно поверхности адсорбента. К числу таких ПАВ относятся и мно- [c.257]

    Рассмотрим причины, которые вызывают изменение проницаемости породы при фильтрации в ней жидкости. Известно, что если растворенное в жидкости вещество понижает свободную энергию поверхности, то процесс адсорбции будет идти самопроизвольно. Исследования Лангмюра и Гаркинса показали, что в поверхностном слое молекулы ориентированы определенным образом относительно поверхности раздела. А. Н. Фрумкин, П. А. Ребиндер, [c.127]

    ПАВ — это вещества с асимметричной структурой, в которых молекулы состоят из одной или нескольких гидрофильных групп и содержат одну или несколько гидрофобных радикалов. Гидрофильная группа — активная полярная составляющая молекулы ПАВ — обладает ненасыщенной вторичной валентностью и на границе раздела нефть — вода погружается в водную фазу. Гидрофобная группа (радикал) — инактнвная неполярная составляющая молекулы ПАВ, не имеет валентности и тяготеет к нефтяной (масляной) фазе. Ее часто называют олеофильной группой. Она представляет собой цепочку углеводородных радикалов. Такая структура молекул веществ, называемая дифильной, обуславливает ее поверхностную (адсорбционную) активность, т. е. способность вещества диффундировать через объем фазы и концентрироваться на поверхностях раздела фаз таким образом, что полярная (гидрофильная) часть молекулы, имеющая родственную природу с полярной фазой (например, водой), растворяется в ней, а неполярная (олеофильная) цепочка ориентируется в сторону менее полярной фазы, например нефти или керосина. ПАВ адсорбируются и на твердой поверхности, изменяя при этом ее молекулярно-поверхностные свойства. В результате адсорбции ПАВ происходит диспергирование гетерогенных систем образование защитной, более гидрофобной (или гидрофильной) по сравнению с первоначальной, пленки стабилизация (дестабилизация) дисперсной среды. [c.66]

    При адсорбции больших молекул, обладающих, наряду с периферическими диполями, большой неполярной частью, например молекул спиртов с достаточно большой углеводородной цепью, молекул фенола и т. п., энергия дисперсионных сил больше энергии электростатического взаимодействия диполя адсорбата с полем ионов или полем диполей поверхности адсорбента. В результате молекула адсорбата, например фенола, ориентируется плоскостью бензольного кольца параллельно поверхности адсорбента. При такой вынужденной ориентации диполя молекулы адсорбата энергия электростатического взаимодействия меньше, чем при свободной его ориентации, так как ось диполя оказывается расположенной под углом к направлению электростатического поля поверхности. [c.496]

    Возникает необходимость в более совершенных подходах к идентификации параметров пористой структуры катализаторов, установлению адекватных кинетических моделей адсорбции, определению оптимальных условий протекания процесса на зерне катализатора. Более совершенная стратегия принятия решений ориентирована на применение современных принципов автоматизации научных исследований в катализе, в частности на использование универсальной автоматизированной комбинированной установки для изучения свойств адсорбентов и катализаторов, рассматриваемых в гл. 4. [c.163]

    Кривые для суммарных смол, выделенных из остаточного рафината, имеют больший тангенс угла наклона, чем для суммарных смол из депарафинированного масла и петролатума. Следовательно, при наличии в растворе полярных молекул ПАВ (присадок и смол) следует учитывать увеличение адсорбционной активности вследствие дополнительных электростатических сил взаимодействия ПАВ между собой и с поверхностью кристалла (адсорбента). При охлаждении такой системы с момента образования зародышей твердой фазы начинается процесс адсорбции смол и присадки на поверхности кристаллов. Наиболее вероятен в данном случае усложненный механизм построения адсорбционного слоя поверхностно-активных веществ на неоднородной поверхности твердой фазы. Насыщенный адсорбционный слой ПАВ для неоднородной в энергетическом отношении поверхности кристаллов, какой следует считать большинство реально существующих поверхностей твердых сорбентов в природе, может быть различной толщины на разных участках поверхности. При добавлении малых количеств присадки происходит адсорбция их молекул на наиболее активных участках гидрофобной поверхности кристаллов твердых углеводородов, при этом дифильные молекулы ПАВ ориентируются полярной частью в раствор, а углеводородным радикалом — на поверхности частиц твердых углеводородов. Это приводит к совместной кристаллизации молекул присадки и твердых углеводородов, которая способствует образованию крупных агрегированных структур, что, в свою очередь, увеличивает скорость фильтрования суспензии остаточного рафината. С увеличением содержания ПАВ в растворе одновременно с адсорбцией молекул на менее активных участках поверхности кристаллов происходит образование второго слоя молекул с обратной их ориентацией, т. е. полярной частью на поверхность твердой фазы. При этом присадка и смолы адсорбируются по всей поверхности кристаллов, не внося существенных изменений в их форму, но препятствуя росту кристаллов, а это снижает скорость фильтрования суспензии. [c.173]


    Двойной электрический слой может возникнуть также в результате адсорбции поверхностно-активных веществ. При специфической адсорбции полярные молекулы определенным образом ориентируются на поверхности металла и возникает адсорбционный двойной электрический слой и соответствующий скачок потенциала. В водных растворах электролитов на поверхности металлов всегда имеется двойной электрический слой в результате адсорбции дипольных молекул воды. [c.300]

    Характер адсорбции и ориентации зависит от взаимодействия адсорбционных центров поверхности с активными центрами молекул. Наиболее полно изучена экспериментально адсорбционная ориентация полярно-цепных молекул с одним активным центром расположенным в конце цепи молекулы. К их числу относятся насыщенные нормальные основные карбоновые кислоты, одноатомные спирты и другие аналогичные или однозамещенные углеводо роды. Молекулы этих веществ имеют вертикальную ориентацию при адсорбции. Бездипольные молекулы углеводородов ориентируются горизонтально относительно твердой поверхности. Такая ориентация характеризуется наиболее слабым взаимодействием молекул или его отсутствием. [c.66]

    Наличием в воде поверхностно-активных веществ обусловлена также гидратация поверхностей газовых пузырьков в воде. В результате адсорбции на границе раздела фаз газ—вода химические реагенты ориентируются полярными группами в сторону воды и упорядочивают ее молекулы. Под воздействием адсорбировавшегося химического реагента весь пузырек окружается гидратной оболочкой. Причем гидратные оболочки отдельных полярных групп органических молекул препятствуют их предельному уплотнению в поверхностном слое и играют роль поверхностной пленки, занимая в них большие площади, чем молекулы поверхностно-активных веществ. [c.59]

    Такая же скорость дегидрирования была найдена для аллилово-го спирта, но для вторичных спиртов она оказалась гораздо больше. Это доказывает, что спирты адсорбируются ориентированно в результате прикрепления СН,ОН-групп на поверхности катализатора. Скорость реакции зависит только от деформации функциональной группы, но не от соединенной с нею углеродной г.епи. Началом дегидрирования является увеличение расстояния между кислородом и водородом в ОН-группе вследствие деформирующего воздействия активных центров меди. Один атом водорода отрывается, и неустойчивый радикал R H,0 стабилизируется в F HO, выделяя еще один атом Н. Суммарно процесс идет в три стадии 1) избирательная адсорбция молекул спирта, ориентирующихся полярной группой на активных центрах катализатора, 2) активация или ослабление связей О—Н и отрыв атома Н, 3) десорбция альдегида и водорода. [c.284]

    Металл может выполнять роль галоидного атома не только нри адсорбции ионов щелочных металлов, как было показано в предыдущем разделе, но и в некоторых других случаях, когда он ведет себя подобно атому хлора в НС1, образуя ковалентную связь. В качестве примера может служить адсорбция атомов водорода на поверхности платины. Образующиеся при этом диполи ориентированы своими положительными концами в сторону от металла и могут рассматриваться как резонансные гибриды [c.47]

    Эта же картина остается справедливой в случае физической адсорбции иа поверхности металлов. Под влиянием поляризации диполи адсорбированных молекул ориентируются своими поло- [c.70]

    При адсорбции на окиси алюминия эта молекула ориентируется группой ОН в сторону отрицательно заряженных ионов кислорода. [c.88]

    Хемосорбированные атомы большинства веществ образуют диполи на поверхности адсорбентов. Эти диполи могут быть ориентированы либо положительными, либо отрицательными концами в направлении от металла (раздел V, 86). В обоих случаях диполи оказывают влияние на работу выхода металла, увеличивая ее, когда они направлены отрицательными концами от металла, и уменьшая ее при ориентации в противоположном направлении. Поскольку образование отрицательного диполя (отрицательный полюс направлен от поверхности) происходит путем смещения электрона от металла к адсорбированному атому, то при этом совершается работа против работы выхода. С увеличением степени заполнения, когда работа выхода возрастает, для образования новых диполей требуется затрата большего количества энергии. Поэтому теплота адсорбции будет уменьшаться. В случае положительных диполей сродство металла к электрону облегчает их образование. Поскольку сродство к электрону с увеличением количества адсорбированных атомов уменьшается, то результатом этого снова является уменьшение теплоты адсорбции с увеличением степени заполнения [254]. [c.140]

    Адсорбция полярных молекул на адсорбенте, имеющем ионы или диполи, вызывает взаимодействие диполя адсорбата с электростатическим полем адсорбента. Если молекулы адсорбата невелики и обладают периферийно расположенными диполями, как, например, у молекул воды или аммиака, то они ориентируются в электростатическом поле адсорбента. При этом возникает ориентационное кулоновское взаимодействие. [c.107]

    Рассмотрим кратко электрокапиллярные кривые в присутствии поверхностно-активных органических веществ (рис. 22). В присутствии h-QHjOH происходит снижение пограничного натяжения в максимуме электрокапиллярной кривой, сдвиг п. н. з. в положительную сторону и слияние а.Е-кривых при достаточно большом удалении от п.-н. з. как в катодную, так и в анодную стороны. Снижение пограничного натяжения связано с положительной адсорбцией бутилового спирта на поверхности ртути. Сдвиг п. н. з. свидетельствует об ориентированной адсорбции органического вещества. Молекула н-С Н ОН при адсорбции ориентируется к поверхности своим положительно заряженным концом, что и приводит к сдвигу п. н. 3. Б положительную сторону. Имеются, однако, органические вещества, которые смещают п. н. 3. в отрицательную сторону. Совпадение а, -кривых при доста- [c.44]

    Молекулы нафтеновых и жирных кислот имеют асимметричнополярное строение и состоят из полярной группы СООН и длинного неполярного углеводородного радикала. Такие молекулы при адсорбции ориентируются своими полярными группами к частицам цемента и зернам заполнителей, адсорбировавших ионы кальция углеводородные же радикалы при этом обращены наружу. Эти углеводородные цепи гидрофобны, не смачиваются водой, между их концами, образованными метильными группами, существуют лишь сравнительно слабые силы притяжения. Плоскости, образованные метильными группами, являются плоскостями скольжения, если внешняя сила действует касательно к плоскостям (рис. 44), что имеет место при перемешивании, вибрировании, прокате и других механических воздействиях на бетонную смесь. [c.169]

    Наибольшей П. а. обладают, как показали в 1916-17 И. Ленгмюр и У. Харкинс, в-ва, молекулы к-рых дифильны, т.е. состоят из полярных и неполярных частей. Такие в-ва наз, поверхностно-активньши веществами (ПАВ). Полярная (гидрофильная) часть молекулы при адсорбции ориентируется в сторону полярной фазы (обычно воды), неполярная часть-углеводородный радикал - выталкивается из полярной фазы, ориентируясь в направлении менее полярной фазы. напр, воздуха, углеводородных или др. орг. жидкостей. Молекулы ПАВ образуют при адсорбц. насыщении как бы двухмерную (мономолекулярной толщины) кристаллич. решетку. Это дает возможность определять размеры и структуру адсорбирующихся молекул и устанавливать их связь с П. а. (см. Мономолекулярный слой). [c.584]

    В циклопентане и циклогексане только атомы водорода в г ис-положении могут находиться в заслоненной конформации, а следовательно, лишь цис-связи углерод — поверхность могут находиться в заслоненной конформации. В циклооктане, наоборот, цикл достаточно велик, чтобы и гаранс-атомы водорода могли принять участие в образовании заслоненной конформации. Оба транс-1,2-диад-сорбированных циклооктана при адсорбции ориентируются одной или другой стороной цикла. [c.65]

    Четкость выделения зон адсорбции зависит от природы разделяемой смеси и адсорбента, а также от условий проведения процесса температуры, давления, скорости подачи разделяемого потока. При хорошей дифференциации зон адсорбции появление компонентов в выходном потоке строго последовательно при этом говорят о хроматографическом разделении исходной смеси. В промышленных условиях хроматографического разделения, как правило, не происходит, такая цель и не ставится обычно решается задача извлечения из исходной смеси одного или нескольких целевых компонентов. В последнем случае процесс ориентируется на извлечение ключевого компонента — наименее сорбируемого из целевых. Появление ключевого компонента в выходном потоке является сигналом о необходимости прекращения процесса адсорбции. В силу обратимости процесса адсорбции адсорбированные компоненты можно удалить из слоя адсорбента, т. е. десорбировать. На процесс десорбции особое влияние оказывает повышение температуры слоя адсорбента и создаиие потока газовой (паровой) фазы — десорбирующего (регенерационного) потока. В результате осуществления процесса десорбции получают целевые компоненты в виде продукта и регенерированный (освобожденный от адсорбированного вещества) адсорбент. Слой адсорбента, таким образом, последовательно переходит из цикла адсорбции в цикл регенерации. Цикл регенерации, в свою очередь, подразделяется на стадию нагрева (собственно десорбция) и стадию охлаждения (снижение температуры слоя адсорбента до температуры адсорбции). В соответствии с этими стадиями адсорбционного процесса путем последовательного переключения перерабатываемого потока с одного адсорбционного аппарата на другой организуется непрерывный производственный процесс. [c.93]

    При адсорбции поверхностно-активных веществ (ПАВ) на поверхности твёрдого тела характер смачивания меняется если они ориентируются своими полярными группами к твёрдой поверхности, то поверхность становится гидрофобной если ориентируются неполярными группами,- гидрофильной. Поэтому обработка поверхностей твёрдых тел раотворами ПАВ мохет изменить её х рактер - гидрофобизировать гидрофильные поверхности или гид рофйлизировать гидрофобный [c.58]

    Препятствуют сближению асфальтеновых молекул алкильные заместители, неплоская конфигурация циклоалкановых фрагментов, а также имеющиеся пустоты в структуре. Однако наличие ароматической плоской площадки одной молекулы будет способствовать адсорбции плоского ароматического фрагмента асфальтеновой или смоляной молекулы, при этом они. будут располагаться параллельно с контактами по всей площадке. Гетероатомы также ориентируют молекулы смол соответствующим образом в результате электростатического взаимодействия. Возможно, что размер площадки при сорбции нескольких молекул может быть увеличен. [c.287]

    Стремление поверхности уменьшить свою энергию обусловливает и стремление к снижению поверхностного натяжения. Твердые тела, как правило, уменьшают свою поверхностную энергию за счет этой составляющей благодаря адсорбции других веществ. К этому способны и жидкости, на поверхности которых благодаря стремлению уменьшить поверхностную энергию происходит, кроме того, определенное ориентирование молекул. Это особенно характерно для веществ, имеющих несимметричные молекулы. На.ходясь на поверхности, они ориентируются таким образом, чтобы в сторону, например, газовой фазы, была обращена та часть молекулы, которая обеспечивает меньшее поверхностное натяжение. [c.31]

    Исследования показали, что вещества с одной и той л<е функциональной группой независимо от длины радикала имеют одинаковые значения величин и ш. Например, для всех жирных кислот U = 0,205 нм . Независимость m от длины радикала позволила сделать выводы о характере расположения молекул на поверхности. Если на молекулу ПАВ приходится значительная площадь и она свободно перемещается по поверхности жидкости, то ее углеводородный радикал, как правило, лежит на поверхности. В сплошном мономолекуляриом слое углеводородные радикалы ориентируются вертикально, образуя так называемый частокол Ленгмюра . Ленгмюр впервые установил этот факт, который позволил вычислить толщину поверхностной пленки б. Объем пленки, занимающей единицу поверхности, численно равен б. В то же время этот объем равен произведению максимальной адсорбции Лоо на мольный объем ПАВ V . Поэтому [c.163]

    И той же температуре одинакова и не зависит от длины цепи, соединенной с функциональной группой. Е. Пальмером и X. Констэблом было сделано заключение, что молекулы спирта ориентируются при адсорбции на меди так, что ОН-группы примыкают к атомам поверхности Си (аналогично ориентации жирных кислот на воде). [c.127]

    Несколько лет назад Миньоле [38] установил, что металл также вызывает поляризацию молекул, адсорбированных на его поверхности. При измерениях контактных потенциалов им было обнаружено, что даже неполярные молекулы, адсорбированные на nOiBepxHO TH металлов чисто физическими силами адсорбции, обнаруживают довольно заметные дипольные моменты. Так, например, он нашел, что при адсорбции ксенона на поверхности никеля происходит изменение потенциала на 0,85 в. Предполагая, что в этом случае образуется сплошной адсорбционный слой ксенона, Миньоле сделал вывод, что каждый атом ксенона приобретает индуцированный дипольный момент ц, равный 0,42-Ю ЭЛ. ст. ед. (0,42 ед. Дебая). Эти диполи ориентируются таким образом, что их положительные концы направлены в противоположную сторону от адсорбирующей поверхности. [c.40]

    Напротив, при физической адсорбции па ионных диэлектриках условия являются иными. Как уже отмечалось выше, на поверхности этих веществ действуют поля, обусловленные определенными силами, которые зависят от знака заряда ионов, приближающихся к центрам поверхностных элементарных ячеек (см. разделы V, 4 и 5). Поэтому многие молекулы, обладающие диполями (как периферическими, так и непериферическими) или квадруполями, обнаруживают тенденцию к ориентации на поверхности и к потере своего вращательного движения. Как было указано в разделе VI, 2, Дрэйн и Моррисон [37] приняли, что молекулы азота вследствие наличия у них квадрупольных моментов располагакзтся плоско при адсорбции на поверхности рутила. Экспериментальные значения размеров молекулярных площадок, занимаемых другими молекулами при адсорбции на полярных веществах, также указывают на то, что ЕЮ многих случаях адсорбированные молекулы плоско ориентированы на пове])хности. [c.91]

    Такое воспроизведение структуры было обнаружено при осаж денин меди (рис. Х1-2) и некоторых других металлов на одноименном и даже чужеродном катодах при малых плотностях тока, т. е. при относительно небольшой линейной скорости роста кристаллов и небольшой толщине осадка. С увеличением толщины покрытия ориентирующее влияние поверхности основания постепенно уменьшается вследствие того, что некоторые побочные процессы, сопровождающие осаждение металла (адсорбция различных веществ на катоде, выделение водорода и др.), нарушают [c.339]


Смотреть страницы где упоминается термин Адсорбция ориентированная: [c.100]    [c.471]    [c.323]    [c.472]    [c.95]    [c.38]    [c.15]    [c.37]    [c.157]   
Руководство по физической химии (1988) -- [ c.230 ]

Синтетические моющие и очищающие средства (1960) -- [ c.41 , c.50 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентированная адсорбция сорбция ориентированная



© 2025 chem21.info Реклама на сайте