Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пушка электронная

    Для проведения процессов плавки, испарения и термообработки применяют пушки со средней й большой мощностью пучков (от 5 до 1200 кВт), удельной поверхностной мощностью от нескольких десятков киловатт на квадратный сантиметр с диаметром пучков до 100 мм. По применяемым ускоряющим напряжениям различают установки низкого (20-200 кВ), среднего (от 200 до 600 кВ) и высокого (600 кВ -5 MB) напряжения. Ускоряющее напряжение технологических электронно-лучевых установок находится в пределах 10-150 кВ, а в химических электронно-лучевых процессах- 300 кВ, реже 1 MB и выше. В диапазоне ускоряющих напряжений 10-150 кВ скорость электронов составляет 0,2-0,6 скорости света. При напряжении выше 100 кВ следует учитывать релятивистские эффекты, так как кинетическая энергия электрона, ускоренного в поле напряжением U до скорости v, равна [c.103]


    Независимо от типа электронные микроскопы состоят из колонны, вакуумной системы и системы электронного питания. Устройство колонны просвечивающего микроскопа схематически показано на рис. 7.7. Источником потока электронов является пушка, состоящая из катода, анода и фокусирующего электрода. Между катодом и анодом создается высокое напряжение, которое разгоняет испускаемые катодом электроны до больших скоростей. По выходе из пушки электроны продолжают двигаться по инерции прямолинейно и равномерно с этими скоростями. По-гок электронов с помощью конденсорной линзы формируется и направляется на исследуемый образец. Проходя через образец, часть электронов в результате столкновений рассеивается на определенный угол. Электроны, рассеивающиеся на большой угол, задерживаются апертурной диафрагмой и в формировании изображения не участвуют. Элект- [c.110]

    Основные положения. — Взамен ОСТ 16 0.800.960—82 Оборудование электротехническое взрывозащищенное и рудничное. Надежность, методика сбора и статистической обработки информации по результатам эксплуатационных испытаний. — Взамен ОСТ 16 0.689.037—74 Пушки электронные. Методы оценки уровня качества Насосы, фильтры для бытовых комнатных аквариумов. [c.83]

    Есть несколько способов осаждения металлических покрытий в вакууме, но наиболее производительно термическое осаждение (испарение) металлов. Испаритель с металлом для покрытия помещают в вакуумную камеру. К испарителю подают тепловую энергию обычно с помощью электронно-лучевой пушки, металл разогревается до температуры, при которой давление его паров достигает 1,33 Па. Стальная полоса непрерывно движется над испарителем, и пары металла, конденсируясь, образуют на ней плотное однородное покрытие. Одно из важных достоинств вакуумной металлизации — отсутствие горячих и вредных цехов, большого количества сточных вод, что устраняет вредное влияние на окружающую среду, повышает культуру производства и улучшает санитарно-гигиенические условия труда. Однако вакуумный способ нанесения покрытий требует применения дорогого и сложного оборудования, что связано с техническими трудностями и требует высокой квалификации обслуживающего персонала. [c.82]

    Пушки электронных приборов либо являются маломощными устройствами, либо работают в импульсном режиме с большой скважностью пучка. Эти пушки работают в стабильном высоком вакууме запаянных приборов, что позволяет широко применять электростатические методы фокусировки и проведения пучка, а также не уделять большого внимания вопросам их тепловых режимов. [c.240]


    Электронный микроскоп состоит из электронной пушки — источника быстрых электронов и системы электромагнитных линз, обеспечивающих две или три степени увеличения (объектив, промежуточная линза и проектор). Источник электронов, представляющий собой вольфрамовую нить, дает пучок электронов, фокусирующийся магнитной линзой-конденсором в практически параллельный пучок, который падает на объект. Схематически путь электронного луча в электронном микроскопе показан на рис. 91. [c.155]

    Прямолинейное распространение электронов возмол<но только в безвоздушном пространстве. В микроскопе это достигается при помощи вакуумной системы. Из пушки электроны попадают в магнитное поле конденсорной линзы/Споток электронов в узкий пучок. Достигая объекта О, электроны рассеиваются и попадают в объективную линзу ОЛ, которая создает первичное увеличенное изображение. Это изображение объекта еще раз увеличивается проекционной линзой ПЛ. Она образует конечное изображение, видимое на флуоресцирующем экране (3) микроскопа и фиксируемое на фотопластинке Ф. От рассеяния и поглощения электронов объектом зависит контраст изображения. [c.51]

    Конструкция ионной пушки, в которой разгоняется поток ионов, например Аг+, Кг+, обеспечивает высокую скорость травления практически без загрязнения поверхности. В сочетании с высокой чувствительностью детектора электронов быстрое травление позволяет профилировать по глубине слой толщиной до 1000 нм в течение нескольких минут. [c.150]

    Для получения особо чистого молибдена и других тугоплавких металлов применяется плавка в электронном пучке (электронно-лучевая плавка). Нагревание металла электронным пучком основано на превращении в теплоту большей части кинетической энергии электронов при их столкновении с поверхностью металла. Установка для электронно-лучевой плавки состоит из электронном пушки, создающей управляемый поток электронов, и плавильной камеры. Плавку ведут в высоком вакууме, что обеспечивает удаление примесей, испаряющихся при температуре плавки (О, N. Р, Аз, Ре, Си, N1 и др.). Кроме того, высокое разрежение необходимо для предотвращения столкновений электронов с молекулами воздуха, что приводило бы к потере электронами энергии. После электронно-лучевой плавки чистота молибдена повышается до 99,9%. [c.659]

    В генераторах электронных пучков электроны, эмиттированные катодом под действием ускоряющих и фокусирующих электростатических, а в ряде случаев и магнитных полей, формируются в пучок. Электростатический генератор состоит из катода, блока управляющих электродов и анода. Основными параметрами электронных пушек являются мощность и диаметр пучка. В различных процессах используют пушки мощностью от 10 Вт до 1 кВт с диаметром пучков от 10 5 до 10 1 мм и удельной поверхностной мощностью до 10 Вт/см , пушки с удельными поверхностными мощностями от 10 до 10 Вт/см и, наконец, пушки мощностью от 1 до 100 кВт, удельной поверхностной мощностью от 105 до 1(у7 Вт/см2 и диаметром пучка от нескольких десятых долей миллиметра до нескольких миллиметров. [c.103]

    В 1970-е годы был разработан новый тип низкоэнергетического (0,15-0,3 МэВ) ускорителя электронов с линейным катодом [18]. Отличительная особенность этих ускорителей заключается в большой силе тока пучка. Основной частью ускорителя является электронная пушка, размещенная вдоль оси цилиндрической вакуумной камеры. Катодом служит длинная непрерывно нагреваемая проволока или лента из вольфрама. Применяют также катоды прямого накала с напаянным на ленту эмиттером из гексаборида лантана. Катод окружен оболочкой, покрытой решеткой, на которую подается высокое напряжение от генератора, анодом служит вакуумное окно из тонкой металлической фольги. Ширина электронного пучка в этом ускорителе имеет большую величину (до 200 см), равную длине катода. Для облучения более широких изделий выпускают установки с двумя и более ускорительными трубками. Параллельное размещение нескольких катодов позволяет значительно расширить зону электронного пучка. [c.104]

    Образец из баллона поступает через диафрагму в зону, где от катода (накаленная нить) к электронной ловушке (земля) идет ток электронов. Электроны выбивают из молекул орбитальные электроны и превращают молекулы в ионы. Ионы под действие все усиливающегося электрического поля, приложенного к сеткам ионной пушки , втягиваются в ионную пушку и ускоряются диаметр диафрагм сеток пушки увеличивается по ходу дви-жения ионов, поэтому ионы расходятся и образуется пучок, который попадает в магнитное поле. Нейтральные молекулы выводятся из трубки с помощью вакуумного насоса. Магнитное поле отклоняют ионы от прямолинейного движения, и они начинают дви- [c.35]


    Электронно лучевой переплав (ЭЛП) проводится в электронно-лучевых печах (рис. 5.66). В них нагрев и плавление металла происходят под воздействием тепла, выделяющегося при резком торможении электронов, поток которых, выходящий из электронной пушки, направлен на металл. При нагреве до высокой температуры в глубоком (1,3 10" —1,3 10 Па) вакууме катод пушки испускает электроны, которые формируются в направленный поток с помощью фокусирующих и отклоняющих устройств при приложении высокого (до 40 кВ) напряжения между анодом и катодом пушки. Для обеспечения равномерного нагрева обычно используются несколько пушек. [c.96]

    Осветительная система предназначена для получения электронов и формирования электронного пучка. Она состоит из электронной пушки, в которой нагретая до высокой температуры вольфрамовая нить испускает электроны, ускоряемые электрическим полем, и конденсорной линзы (электромагнитного или электростатического типа), которая с помощью магнитного или электрического поля фокусирует электронный пучок на исследуемый образец. [c.123]

    Электронные микроскопы по электронно-оптическим системам разделяются на электростатические и электромагнитные. Принципиальная оптическая схема электронных микроскопов аналогична схемам световых микроскопов с той лишь разницей, что оптические-элементы последних заменены электрическими элементами. Источником электронов является электронная пушка, состоящая из като- [c.319]

    Осветительная система предназначена для создания электронов и формирования электронного пучка. Она состоит из электронной пушки и конденсорной линзы. Электронная пушка имеет катод, фокусирующий электрод и анод. Катод является источником электронов и обычно изготовляется из вольфрамовой проволоки. С помощью фокусирующего электрода формируется электронный пучок и регулируется его интенсивность. Далее электроны ускоряются электрическим нолем, которое создается высоким напряжением, приложенным между катодом и анодом. Затем электроны попадают в поле конденсорной линзы, из которой они выходят в виде очень узкого пучка. [c.172]

    Сильные электрические поля, применяемые в источнике пучка электронов ( электронной пушке ), ускоряют электроны до скоростей, соответствующих значениям Хм 10 —10" см. Подстановка этих значений в формулу (IV. 2) показывает, что разрешающая способность позволяет наблюдать отдельные молекулы и, в принципе, безгранична. Рис. 5 и 6 (см. также рис. 111, стр. 283) показывают изображения макромолекулы и порядка расположения атомов в кристалле. Последний снимок получен не в проходящем пучке, а методом дифракции электронов на кристаллической решетке. [c.42]

    В электронном пучке электроны отталкиваются друг от друга и пучок расширяется. Поэтому если необходимо получить острый, сконцентрированный пучок, то ускоряющее напряжение должно быть весьма высоким, а на пути пучка следует применять магнитную фокусировку, сжимая его магнитным полем. Практически при широком несфокусированном пучке (установки с кольцевым катодом и радиальными пушками) ускоряющие напряжения составляют 5—15 кВ, а при сфокусированном луче (установки с аксиальными пушками)—30—40 кВ при работе с остро сфокусированным лучом (сварочные установки) ускоряющие напряжения равны 70—100 кВ. [c.248]

    Для создания электронных пучков используют специальные электронные пушки с катодами в виде проволочной петли из вольфрама или сплава вольфрама с рением [14]. Плотность тока термоэлектронной эмиссии достигает 5 А/см2. В. игольчатых катодах к вершине петли прикрепляют иглу с радиусом кривизны менее 1 мкм, с поверхности которой в полях напряженностью 10 -10 В/см в результате электронной эмиссии плотность тока возрастает до 10 Л/рм2. В технологических установ1 ах с интенсивными (сильноточными) электронными потоками находят применение плазменные эмиттеры на основе тлеющих и дуговых разрядов [15]. В этих эмиттерах площадь и форма эмиссионной границы определяется свойствами плазмы и условиями токоотбо- [c.102]

    В отличие от твердых и жидких материалов газы и пары могут находиться в столь разреженном состоянии, что движение заряженных частиц под действием наложенной разности потенциалов происходит практически без столкновений с другими частицами. В этих условиях подводимая электрическая энергия увеличивает кинетическую энергию заряженных частиц, которая может быть в дальнейшем превращена в тепло при соударении с материалами, подвергающимися технологической обработке. Этот способ превращения электрической энергии в тепло с промежуточным получением весьма высокой кинетической энергии заряженных частиц особенно выгоден при использовании электронов — частиц с минимальной массой, разгоняемых в вакууме до скоростей порядка десятых долей скорости света. Соответствующее устройство, схематически показанное на рис. 62, получило название электронной пушки, фо единст- [c.203]

    Электронографический анализ осуществляется на электронографах — электронно-оптических вакуумных приборах, которые могут работать и как электронные микроскопы, позволяя получать теневые электронно-оптические изображения, хотя их работа в этом режиме имеет вспомогательное значение. К таким приборам, например, относится электронограф ЭГ-100А. По ходу электронного пучка сверху он имеет следующие основные узлы электронную пушку (источник электронов) двойную электромагнитную линзу кристаллодержатель, позволяющий осуществлять различные перемещения образцов по отношению к пучку электронов камеры образцов проекционный тубус фотокамеру с флюоресцирующим экраном для визуальной работы низко- и высоковольтные блоки питания пульт управления. В электронографе имеется устройство для исследования газов и паров различны < веществ. Разрешающая способность прибора позволяет получать раздельные дифракционные максимумы при различии в меж-плоскостном расстоянии на 0,001 А. Наблюдение дифракционной картины производится на флюоресцирующем экране или фотографическим методом. Электронографическая картина различна в зависимости от типа снимаемого объекта точечная электронограмма образуется при съемке монокристаллов на просвет и на отражение кольца на электронограмме образуются при исследовании поликристаллических веществ дуги и кольца — от веществ, имеющих текстуру. [c.106]

    Рентгеновский микроанализатор МАР-1 (МАР-2) представляет собой двухтумбовый стол, в котором размещены основные узлы и системы 1) электронно-оптическая система, состоящая йз электронной пушки и электромагнитных конденсаторной и объективной линз, собирающих электроны в узкий пучок 2) вакуумная система, состоящая из колонны, в которую вмонтированы электроннооптическая система и держатель образцов, а также соответствукэ-щих насосов 3) два рентгеновских спектрометра 4) оптический микроскоп 5) механическое устройство для перемещения образца. В МАР-1 используется неподвижный электронный луч, относительно которого механическим способом перемещается образец. [c.151]

    IXA-3A (Япония). Рентгеновский микроанализатор электронно-оптическая система состоит из электронной пушки и фокусирующей электромагнитной линзы. Благодаря высокоА-абильным источникам питания эта система дает возможность получить стабильный во времени и, следовательно, пригодный для продолжительных измерений пучок электронов диаметром менее 1 мкм, интенсивность которого можк о регулировать от О до Ю Д, Ускоряющее напряжение меняется ступенями через пять киловольт от О до 50 кВ. [c.154]

    Электронно-оптическая система предназначена для создания монохроматического сходящегося пучка быстрых электронов. Она состоит из электронной пушки с бронированным выводом, фокусирующих электромагнитных (конденсорных) линз с полюсными наконечниками, блоков механической и электромагнитной юстировки электронного луча и электрической схемы питания. Источником электронов служит вольфрамовая V-образная нить, помещаемая внутрь управляющего (венельтова) цилиндра и нагреваемая электрическим током высокой частоты. Для ускорения электронов, эмиттированных катодом, на этот узел подается отрицательное относительно заземленного анода высокое (40—100 кВ) стабилизированное напряжение. [c.138]

    На рис. XX.1 показана схема классических опытов Девисона и Джермера. Пучок электронов из Кеалдванометру электронной пушки А попадает иа грань кристалла В. Фарадеев, , цилиндр С измеряет интенсив- [c.426]

    Электронограф состоит из колонны, вакуумной части, блоков электрического питания и управления (см. также техническую инструкцию на эксплуатацию прибора), В верхней части колонны расположены электронная пушка, электромагнитные линзы, кри-сталлодержатель образца, смотровые окна, проекционный тубус, фотокамера с фотопластинками. [c.105]

    Как видно из рис. VI. 16 и в, оптическая схема электронного микроскопа просвечивающего типа в основных чертах напоминает оптическую схему обычного светового микроскоца (рис. VI. 1а) с тем отличием, что в электронном микроскопе источник света заменен источником электронов, а стеклянные линзы — электромагнитными или электростатическими. Электронные лучи создаются и формируются специальной электронно-оптической системой, которая называется электронной пушкой. Нагретая до высокой температуры вольфрамовая пить 1 (рис. VI.16 и й) эмитирует электроны, которые, попадая в ускоряющее поле электронной пушки, образуют пучок. В центре анода имеется небольшое отверстие, через которое пролетают электроны, используемые в дальнейшем для образования изображения. Далее электронный пучок попадает в конденсорную линзу 2, которая фокусирует его на исследуемый объект 3. Пройдя через объект, электронные лучи попадают в поле объективной линзы 4, которая создает промежуточное изображение 5, а затем в проекционную линзу 6, направляющую электронные лучи на флюоресцирующий экран и образующую конечное изображение 7. Флюоресцирующий экран покрыт веществом, способным светиться под действием ударов электронов (сульфид цинка, сульфид кадмия). Благодаря этому электронное изображение превращается в световое и становится видимым. Электронное изображение может быть зафиксировано на фотопластинке. [c.170]

    Применение ультрамикроскопа позволяет наблюдать частицы с размерами до 3 нм, т. е. отодвигает границу видимости почти на два порядка, охватывая практически всю коллоидную область дисперсности. Еще более высокой разрещающей способностью обладают электронные микроскопы, в которых пучок электронов, проходящих через объект, фокусируется посредством электромагнитных полей. Увеличенное изображение проецируется на светящийся экран или фотографируется. Как известно, электрону может быть сопоставлена волна, длина которой обратно пропорциональна скорости электрона и и его массе т к = Н/ти, где /г — постоянная Планка. Сильные электрические ноля, применяемые в источнике пучка электронов ( электронной пушке ), ускоряют электроны до скоростей, соответствующих значениям Я 10 — 10- см. Подстановка этих значений в приведенную формулу показывает, что разрешающая способность позволяет наблюдать отдельные молекулы и, в принципе, безгранична (см. рис. XIV. 10). [c.43]

    На рис. XXI. 1 показана схема классических опытов Деви сона и Джермера. Пучок электронов из электронной пушки А попадает на грань кристалла В. Фарадеев цилиндр С измеряет интенсивность отраженного пучка. Опыт показал, что зависимость этой интенсивности от угла между нормалью к грани и рассеянным лучом подчиняется уравнению Брегга, которое описывает дифракцию рентгеновских лучей— см. формулу (XXIV. ). [c.546]


Смотреть страницы где упоминается термин Пушка электронная: [c.46]    [c.253]    [c.45]    [c.97]    [c.248]    [c.28]    [c.148]    [c.269]    [c.49]    [c.394]    [c.102]    [c.320]    [c.371]    [c.151]    [c.199]    [c.200]    [c.47]   
Современная аналитическая химия (1977) -- [ c.244 ]

Электрические явления в газах и вакууме (1950) -- [ c.180 ]




ПОИСК





Смотрите так же термины и статьи:

Аксиальные электронные пушки

Радиальная электронная пушка

Электронная печь с радиальными электронными пушками

Электронные пушки длиннофокусные

Электронные пушки с изгибом траектории электронного

Электронные пушки с изгибом траектории электронного луча

Электронные пушки с испаряемым анодом

Электронные пушки с независимым анодом



© 2025 chem21.info Реклама на сайте