Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электронная микроскопия разрешение изображения

    Повышение контрастности. Контрастность рельефа реплик обычно невелика, что снижает четкость изображения дета ей поверхности в электронном микроскопе и разрешение последнего. Контрастность реплик повышают путем оттенения деталей их рельефа металлами, напыляемыми на поверхность реплики под углом, т. е. методом косого напыления металлов. Реплику укрепляют на штативе под углом 10—45° (подбирают экспериментально). В нагреватель, представляющий собой лодочку из тантала или спиральный конус из вольфрамовой проволоки, помещают 5—8 мг распыляемого металла (золота, хрома и т. д.) и накрывают его пластинкой с отверстием. Расстояние от реплики до нагревателя 5—6 см. При нагревании в вакууме металл испаряется, причем атомный поток его движется прямолинейно и конденсируется на всех стоящих на пути предметах. В результате на тех участках реплики, которые расположены перпендикулярно атомному потоку, быстро набирается толстый слой металла, участки же реплики, загороженные от потока выступами, практически не покрываются металлической пленкой. В результате на изображении возникают тени (рис. 58) и полутени . Следовательно, напыление позволяет сильно повысить контрастность рельефа реплик. Зная длину тени, можно вычислить глубину рельефа или высоту к различных уступов на реплике по уравнению [c.146]


    С W i к S с а п - 5 О А (США). Растровый электронный микроскоп. При ускоряющем напряжении 15 кВ имеет разрешение 5 нм, а при 1 кВ — 25 нм. Микроскоп имеет максимальное увеличение в 220 000 раз. У микроскопа имеется приставка для нагревания изображение можио наблюдать на телевизионном экране. [c.154]

    Зеркальный электронный микроскоп. Изображение в микроскопе создается зеркалом , состоящим из анода, иммерсионной линзы и объекта (под потенциалом катода). Пучок электронов, идущий от анода, рассеивается поверхностью зеркала в зависимости от отражательной способности разных ее участков. Рассеивание электронов происходит вблизи поверхности образца, несущей контактную разность потенциалов. Контактные разности потенциалов обусловлены неоднородностью состава и рельефа образца,, поэтому видимое изображение на экране картины рассеянных электронов отображает строение поверхности. Разрешение зеркального микроскопа является функцией напряжения поля у поверхности образца и составляет около 100 нм. Так, зеркальный микроскоп JEM-M1 (Япония) имеет разрешение 100 нм при увеличении 1000. Микро- [c.155]

    При любом детальном исследовании биологического материала следует сравнивать информацию, получаемую с помощью широкого набора приборов. Во многих случаях полезно начинать исследования с РЭМ, поскольку его диап азон увеличений включает в себя область увеличений от получаемых с хорошей лупой до получаемых в просвечивающем электронном микроскопе высокого разрешения. В РЭМ также мы получаем привычное нам изображение. Сравнительные исследования относительно просто выполнять, подготавливая образец либо для просвечивающего электронного микроскопа, либо для оптического микроскопа после изучения образца в РЭМ. Пример сравнительного исследования приведен на рис. 11.3, а дальнейшие подробности можно найти в статьях [316—319] и в книге [320]. В работе [321] подробно описываются методы, которые могут быть использованы для сравнения всех трех типов изображений с гистохимическими данными, а в статье [322] дается подробное описание сравнительных исследований в световом микроскопе методом авторадиографии и в РЭМ. [c.220]

    Парадокс, связанный с реальной интерпретацией изображений, получаемых с помощью РЭМ, состоит в том, что это является как самой простой, так и самой сложной частью всего процесса. Это очень просто, потому что изображения знакомы нам, и при малых увеличениях мы легко узнаем изображения, которые мы наблюдаем в стереоскопическом бинокулярном микроскопе. Это трудно, в частности, если новая деталь проявляется при высоком разрешении, так как необходимо четко разделять артефакты, которые возникают в любом препарированном для электронного микроскопа образце, от структуры биологического происхождения, которую мы пытаемся выявить. [c.264]


    Значительно большие возможности представляет растровый электронный микроскоп (РЭМ). Меньшее разрешение РЭМ (порядка 20 нм) компенсируется рядом преимуществ, к числу которых относятся возможность исследования массивных образцов, относительная простота приготовления образцов, большая глубина фокусировки, разносторонняя информация об образце, простота интерпретации изображения и др. [c.24]

    Этот метод настолько эффективен и так широко применяется, что его следует рассмотреть немного подробнее. Как указано во введении к разд. V-6, в сканирующей электронной микроскопии поверхность сканируется фокусированным пучком электронов, а контролируется интенсивность потока вторичных электронов. Сигнал детектора вторичных электронов моделирует растр электронно-лучевой трубки, луч которой развертывается синхронно с фокусированным пучком электронов. Каждая точка растра (т. е. поверхности, формирующей изображение) электронно-лучевой трубки (фактически телевизионной трубки) соответствует некоторой точке на поверхности образца. Яркость изображения меняется пропорционально интенсивности потока вторичных электронов из соответствующей точки на поверхности. Как и в телевизоре, качество изображения зависит от интенсивности сигнала (контрастность изображения обеспечивается тем, что интенсивность сигнала можно менять) и от числа линий развертки (чем больше линий, тем лучше разрешение). [c.226]

    Гидрозоли золота. Золи золота были объектами многочисленных электронно-микроскопических исследований. Это объясняется, с одной стороны, тем, что они являются примером классических гидрофобных золей и ранее всесторонне изучались другими методами, а с другой стороны — сравнительной легкостью изучения их в электронном микроскопе благодаря высокому контрасту изображения частиц и, следовательно, хорошему разрешению, получаемому на снимках. [c.133]

    Несмотря на отмеченные ограничения метода непосредственного разрешения кристаллических решеток, он, несомненно, представляет значительный интерес, и число работ в этом направлении быстро увеличивается. Хотя полученную в электронном микроскопе проекцию кристалла нельзя сравнивать по разрешению деталей с проекцией Фурье, получаемой в результате рентгеновского анализа, однако новый метод имеет то большое преимущество, что он позволяет непосредственно наблюдать дефекты решетки. Не приходится сомневаться, что в трактовке изображений подобных дефектов в скором времени будет достигнут прогресс и тем самым будет открыто широкое поле для исследования кристаллических решеток и их несовершенств. Можно ожидать, в частности, что удастся наблюдать явления, связанные с пластическим течением и изломом кристаллов. [c.193]

    Разрешение изображения в растровом микроскопе зависит от характеристики сигналов и от природы взаимодействия зонда с веществом. Улучшение разрешения идет по пути увеличения яркости источника, что позволяет уменьшить диаметр зонда, оставаясь в разумных пределах интенсивности, а также по пути фильтрации отраженных сигналов. Разрешение на отражение, полученное в современных растровых системах в режиме вторичных электронов, достигает 1,5 нм по точкам. [c.229]

    Для решения ряда специальных задач служат разнообразные, но менее распространенные типы электронных микроскопов. Отражательный микроскоп имеет повышенную чувствительность контраста изображения к тонким деталям микро-рельефа при этом исключается контраст по напряжению, что позволяет разделить эти эффекты. Теневая микроскопия применяется для исследования деталей топографии поверхности с разрешением до нескольких десятков нанометров. Эмиссионный микроскоп дает возможность исследовать поверхность твердого тела в щироком интервале температур при этом извлекаются данные о коэффициентах вторичной электронной и ионно-электронной эмиссий. С помощью эмиссионной микроскопии изучают изменение характеристик вещества при фазовых переходах, кинетику твердофазных реакций и другие процессы. [c.229]

    До последнего времени микростроение поверхности минералов и пород проводили в просвечивающих электронных микроскопах с помощью реплик и ультратонких срезов [1—6]. Методика подготовки образцов к исследованию трудоемка и длительна [5,6]. Наличие большого количества операций в какой-то степени искажает истинное строение изучаемой поверхности минерала и требует многократной проверки и повторения. Кроме того, часто проявляется разрушающее объект влияние вакуума и вредное действие потока электронов [9]. Недостатком указанных методов является и то обстоятельство, что при работе с использованием максимального разрешения оптический и электронный микроскопы имеют малую глубину фокуса и поэтому микрофотографии дают изображение объекта в двух измерениях [10]. Применение сканирующего электронного микроскопа Л5М-2 (Япония) позволяет лучше изучить поверхностную структуру и получить изображение объекта в трех измерениях с большой глубиной резкости. Для проведения исследований на сканирующем микроскопе можно быстро и просто приготовить образцы к исследованию, наблюдать массивные объекты в виде монокристаллов или осадки любой дисперсности. При этом можно увидеть общую картину, ультраструктуру поверхности, ее пористость и агрегацию. Анализирующий электронный луч, сканирующий по объекту, имеет очень малую мощность, поэтому взаимодействие его с объектом не приводит к нагреву и разрушению даже весьма чувствительных биологических объектов. С помощью сканирующего электронного микроскопа впервые удалось различить типы красных кровяных клеток, которые трудно идентифицируются с помощью оптической микроскопии [10]. [c.27]


    Разрешающую способность микроскопа определяют путем измерения минимального расстояния между двумя точками, которые видны раздельно. Изображения точек, расположенных слишком близко, сливаются, поскольку из-за действия аберраций линз и дифракций лучей каждая точка объекта в принципе всегда изображается кружком рассеяния. В качестве тест-объекта для определения разрешающей способности микроскопа по точкам можно брать частицы золота (или тяжелого и тугоплавкого сплава Р1—1г), образующиеся при конденсации из пара на холодной подложке (рис. 20.12, а). Поскольку разрешение в современных электронных микроскопах расстояния близки к межплоскостным расстояниям в кристаллах, в качестве тест-объекта используют различные тонкие кристаллы (рис. 20.12,6). Надо иметь в виду, что в изображении системы плоскостей интерференции разрешение оказывается лучшим, чем в изображении точечного объекта. Дело в том, что в процессе дифракции на кристаллической решетке происходит монохроматизация излучения и на качестве изображения не сказываются хроматические аберрации. [c.448]

    Метод слабого пучка. Анализ дислокаций и наиболее надежное определение вектора Бюргерса обычно проводится при малых значениях g (т. е. при малых индексах действующих отражений) и малых отклонениях от вульф — брэгговского положения. При малых значениях S, т. е. при действии дифрагированных пучков большой интенсивности (сильные пучки), изображения дислокаций имеют ширину порядка 10 нм, тот же порядок имеет расстояние от области контраста до линии дислокации (или от изображения до точной проекции дислокационной линии). По существу указанные величины ( Ю нм) являются характеристикой разрешения обычного метода дифракционной электронной микроскопии в применении к анализу дислокаций, что более чем на порядок хуже разрешения современных приборов. Можно назвать ряд задач, для которых важно улучшить разрешение метода определение положения дислокаций (например, по отношению к границе зерна) выявление расщепления дислокаций и оценка энергии дефекта упаковки выявление парных дислокаций (при упорядочении) выявление дисперсных выделений на дислокациях. Для решения этих задач успешно используется так называемый метод слабого пучка . При использовании слабых действующих пучков (т. е. при больших s) ширина изображения дислокаций снижается до 1 нм. Метод слабого пучка может быть реализован в микроскопах, позволяющих получить темнопольные изображения высокого разрешения. [c.517]

    Прямое изображение кристаллической структуры (фазовый контраст). Лучшие современные электронные микроскопы дают разрешение, достаточное для наблюдения интерференционной картины, непосредственно связанной с кристаллической структурой объектов. В случае металлов с плотной и плотнейшей упаковками атомов обычно получают лишь изображения одного семейства плоскостей интерференции в виде полос, хотя уже были получены изображения проекций структуры фольги золота в ориентации [001], изображения плоско- [c.540]

    Эти волны можно сфокусировать и затем с их помощью получить изображение объекта. Разрешающая способность в этом случае имеет тот же порядок величины, что и длина волны X. Таким образом, теоретически в электронном микроскопе можно было бы видеть объекты атомарных размеров. Однако теоретическая разрешающая способность на практике не достигается. Электронный микроскоп, по существу, дает картину распределения электронной плотности. Поскольку исследуемые объекты должны помещаться на какую-то подложку, то реальным ограничением разрешения является способность отличить объект от поддерживающей его поверхности. [c.120]

    Электронография как метод изучения структуры кристаллов имеет след, особенности 1) взаимод. в-ва с электронами намного сильнее, чем с рентгеновскими лучами, поэтому дифракция происходит в тонких слоях в-ва толщиной 1-100 нм, 2) /з зависит от атомного номера слабее, чем /р, что позволяет проще определять положение легких атомов в присут. тяжелых 3) благодаря тому что длина волны обычно используемых быстрых электронов с энергией 50-100 кэВ составляет ок. 5-10 им, геом. интерпретация электронограмм существенно проще. Структурная электронография широко применяется для исследования тонкодисперсных объектов, а также для изучения разного рода текстур (глинистые минералы, пленки полупроводников и т. п.). Дифракция электронов низких энергий (10-300 эВ, X 0,1-0,4 нм)-эффективный метод исследования пов-стей кристаллов расположения атомов, характера их тепловых колебаний и т. д. Электронная микроскопия восстанавливает изображение объекта по дифракц. картине и позволяет изучать структуру кристаллов с разрешением 0,2-0,5 нм. [c.99]

    Метод теневых покрытий заключается в том, что на исследуемые объекты наносится испарением в вакууме тонкий слой металла. Испарение производится под очень малым углом с металлической спирали, удаленной на сравнительно большое расстояние от объекта. На неровностях объекта, обра-ш,енных к спирали, откладывается слой металла, который отбрасывает тень на его другую сторону. По длине образующихся теней можно судить о величине всевозможных выступов на поверхности. При исследовании таких препаратов под электронным микроскопом получаются изображения с очень высокой контрастностью, что позволяет значительно повысить разрешение и видимость вплоть до частиц диаметром 40 А (в случае волокна — до 15 А). [c.111]

    Для изучения поЕзерхностной структуры микрообъектов в настоящее время применяют сканирующие электронные микроскопы, (СЭМ). Изображение в них получается путем точечной развертки-/ при поступлении электронных сигналов в кинескоп, подобно телевизионному. Этот прибор дает трехмерное изображение непрозрачных объектов с высокой глубиной резкости и разрешением до" [c.17]

    Меняя напряжение, оказывается возможным менять длину волны и, соответственно, разрешающую способность микроскопов. Если применяются достаточно большие напряжения, необходимо учитывать релятивистские поправки. Таким образом, длины волн лежат в пределах 0,001<А,-<0,10 нм [148]. Различные модификации электронных микроскопов позволяют разрешать детали объектов до 0,1 нм. Прн изучении размеров частиц в дисперсионных средах такое высокое разрешение не требуется, поэтому используются обычно небольшие напряжения. Исследование малых частиц позволяет получить информацию об их внешней форме и структуре. Изображение фотографируется и по нему определяется угол рассеяния электронов 0, связанный с размером чистицы г простым соотношением д = к г. [c.102]

    И-500 (Япония). Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,14 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам имеет увсличе 1ие от 100 до 800 000 раз, работает при ускоряющем напряжении до 125 кВ. У микроскопа имеются приставки для охлаждения и нагревания до 800°С. Вместе с приставкой HSE-2 микроскоп мокнет работать и как сканирующий, при этом достигается разрешение в режиме растрового просвечивания 3 нм и режиме вторичной электронной эмиссии 7 нм. При использовании микроскопа совместно с многими рентгеновскими спектрометрами можно проводить микроанализ. [c.147]

    JEM-IOO (Япония). Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,14 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам работает при ускоряющем напряжении до 100 кВ. Дает возможность получать микродифракцию с участка размером до 20 нм. Вместе с приставкой ASID-4D может работать и как сканирующий, при этом достигается более высокое разрешение, чем у предыдущего микроскопа в растрово-просвечивающем режиме 0,15 нм и в режиме вторичной электронной эмиссии 3 нм. [c.147]

    Эльмископ 1202 (ФРГ), Просвечивающий электронный микроскоп обеспечивает предельное разрешение 0,2 нм при изображении плоскости кристаллической решетки и 0,3 нм по точкам работает при ускоряющем напряжении до 100 кВ, имеет увеличение от 200 до SOOOQx. Приставки к микроскопу для просвечивающей растровой микроскопии, стереустройство, устройство для нагревания, охлаждения и растяжения объекта и др. [c.148]

    RSEM (Голландия). Растровый электронный микроскоп работает при ускоряющих напряжениях до 50 кВ, при этом достигается предельное разрешение 10 нм как при растрово-просвечивающем режиме, так и в режиме электронной эмиссии. Микроскоп имеет телевизионное изображение и может использоваться совместно с рентгеновским микроанализатором. [c.154]

    Оба метода (прямой и косвенный) имеют преимущества п недо-счатки, и выбор метода зависит прежде всего от целей исследования. При исследованиях по методу реплик изменения препарата под деймвием электронов минимальные и изображения получаются с хорошим контрастом, однако при этом методе несколько снижается разрешающая способность микроскопа (по отношению к первоначальному объекту). Основное преимущество прямых методов исследования заключается в том, что они обеспечивают максимальное разрешение. Кроме этого, с помощью специальных приспособлений прямые методы позволяют наблюдать поведение объекта при различных воздействиях на него непосредственно в колонне электронного микроскопа (деформация, на1 ревание, охлаждение и др.) и микродифракцию. Однако контрастность изображения при прямых методах исследования, как правило, незначительна, а изменение объекта при облучении электронами не всегда возможно предотвратить. [c.175]

    В туннельном сканирующем микроскопе система пьезокристаллов, управляемая компьютером, обеспечивает трехкоординатное перемещение металлич. зонда на расст оянии порядка 0,1 нм от исследуемой пов-сти. Между ней и зондом прикладывают напряжение ок. 1 В и регистрируют возникающий туннельный ток. Компьютер управляет вертикальньтм перемещением зонда так, чтобы ток поддерживался на заданном постоянном уровне, и горизонтальными перемещениями по осям jt и у (сканированием). Воспроизводимое на дисплее семейство кривых, отвечающих перемещениям зонда, является изображением эквипотенциальной пов-сти, поэтому атомы изображаются полусферами разл. радиусов. Достоинства метода сверхвысокое разрешение (атомного порядка, 10 нм) возможность размещать образец не в вакууме (как в электронных микроскопах), а в обычной воздушной среде при атм. давлении, в атмосфере инертного газа и даже в жидкости, что особенно важно для измения гелеобразных и макромол. структур (белков, ДНК, РНК, вирусов) в нативном состоянии. [c.17]

    Трансмиссионная микроскопия реализуется с помощью трансмиссионных (просвечивающих) электронных микроскопов (ТЭМ рис. 1), в к-рых тонкопленочный объект просвечивается пучком ускоренных электронов с энергией 50-200 кэВ. Электроны, отклоненные атомами объекта на малые 5ТЛЫ и прошедшие сквозь него с небольшими энергетич. потерями, попадают в систему магн. линз, к-рые формируют на люминесцентном экране (и на фотопленке) светлопольное изображение внутр. структуры. При этом удается достичь разрешения порядка 0,1 нм, что соответствует увеличениям до 1,5 10 раз. Рассеянные электроны задерживаются диафрагмами, от диаметра к-рых в значит. степени зависит контраст изображения. При изучении сильно-рассеивающих объектов более информативны темнопольные изображения. [c.439]

    Электронофафически можно проводить фазовый анализ в-ва (в этом случае совокупность значений и сравнивают с имеющимися банками данных), можно изучать фазовые переходы в образцах и устанавливать геом. соотношения между возникающими фазами, исследовать полиморфизм и политипию. Методом Э. исследованы структуры ионных кристаллов, кристаллогвдратов, оксидов, карбвдов и нитридов металлов, полупроводниковых соединений, орг. в-в, полимеров, белков, разл. минералов (в частности, слоистых силикатов) и др. Э. часто комбинируют с электронной микроскопией высокого разрешения, позволяющей получать прямое изображение атомной решетки кристалла. [c.451]

    В первой книге монографии известных американских специалистов изложены стандартные методы растровой электронной микроскопии и некоторые аспекты рентгеновского микроанализа. Рассмотрены особенности электронной оитики приборов, взаимодействие электронов с твердым телом, теория формирования изображения в растровом микроскопе, а также разрешение, информативность режимов вторичных и отраженных электронов, рентгеновская спектрометрия с дисперсией по энергии и длине волны и качественный рентгеновский микроанализ. [c.4]

    В растровом электронном микроскопе (РЭМ) наибольший интерес представляют сигналы, создаваемые вторичными и отраженными электронами, поскольку они меняются при изменении топографии поверхности по мере того, как электронный луч сканирует по образцу. Вторичная электронная эмиссия возникает в объеме вблизи области падения пучка, что позволяет получать изображения с относительно высоким разрешением. Объемность изображения возникает за счет большой глубины фокуса растрового электронного микроскопа, а также эффекта оттенения рельефа контраста во вторичных электронах. Возможны и другие тииы сигналов, которые оказываются также полезными во многих случаях. [c.9]

    Пространственное разрешение изображения во вторичных электронах составляет около Знм (в оптическом микроскопе — около 1мкм), поэтому можно достичь увеличения до 100000. Причина этого заключается в том, что глубина области, из которой вылетают вторичные электроны, всего около 10 нм. В пределах такой глубины расфокусировка первичного пучка незначительна и пространственное разрешение практически равно диаметру пучка. [c.330]

    Сочетание сигналов вторичных электронов, дающих изображение топограг фии поверхности, и сигналов отраженных электронов, дающих картину распределения среднего атомного номера, с качественным и количественным рентгеновским анализом делают ЭЗМА важнейшим методом анализа твердых тел. Он стал рутинным для решения любых типов задач и анализа любых типов материалов (идентификация частиц в металлах, фаз в геологических объектах, пылевых токсичных частиц, асбестовых волокон). Главным ограничением метода является размер аналитического объема—обычно 1-3 мкм диметром и глубиной, что мешает проводить количественный рентгеновский анализ нанофаз, хотя их можно увидеть, используя сигналы вторичных или отраженных электронов. Можно детектировать поверхностные слои толщиной не менее нескольких нанометров, но провести селективный анализ в этом случае не представляется возможным, и очевидно, что необходимо использовать другие методы — аналитическую электронную микроскопию и электронную оже-спектроскопию для микроанализа с высоким разрешением по глубине (единицы нанометров). [c.335]

    Наилучшее разрешение в микроскопии может быть достигнуто с электронными микроскопами просвечивающего типа (трансмис-сионньпйи). Для формирования изображения в ТЭМ применяется мо-нокинетический пучок быстрых электронов, ускоренный высоким напряжением (50-100 кВ или даже 1 МВ), которые фокусируются электронными линзами (электрическим или магнитным полем). Изображение объекта проецируется на флуоресцирующий экран или фотопластинку. Ход лучей в просвечивающем электронном и оптическом микроскопе практически идентичен, высокое разрешение ТЭМ достигается исключительно за счет короткой длины волны электронного луча. Чтобы электронный пучок прошел в микроскопе весь путь (до 100 см) без соударений, в колонне микроскопа применяется высокий вакуум (Ю -Ю мм рт. ст.). [c.354]

    К достоинствам подобнь[х систем относятся повышенное по сравнению с обычными микроскопами разрешение, возможность регулирования яркости, контраста и масштаба изображения электронным способом, большой динамический диапазон (до 60 дБ и более). Для контроля материалов, прозрачных только в инфракрасном [c.509]

    Осн. части электронных микроскопов (кроме камеры для образца) просвечивающего — осветит, система (электронная пушка, конденсорные линзы), проекционная система (объективщле и проекционные линзы), система перевода изображения в видимую форму с помощью флуоресцирующего экрана растрового — система фокусировки электронного пучка (диаметром до 10 нм), состоящая иэ электронной пушки, объективной и конденсорных линз, система сканирования в формирования изображения в электроннолучевой тоубке. В приборах поддерживают разрежение 10" —10" Па. В просвечивающем микроскопе регистрируют прощедшие через образец электроны, в растровом — генерируемые сканирующим электронным зондом вторичные злектрояы. Ускоряющее напряжение в первом случае обычно составляет 30—200 кВ, во втором — 30—50 кВ. Предельное разрешение просвечивающих электронных микроскопов 0,2 нм, растровых — 10 нм. Растровые микроскопы обладают большой глубиной резкости. [c.700]

    Разрешение индивидуальных металлических атомов как в виде отдельных атомов, так и их кластеров находится на грани чувствительности просвечивающей электронной микроскопии (или даже за ее пределами). Теоретический анализ, проведенный Хашнмото и др. [23—25], показал, что для последовательности из нескольких атомов разрешение метода наклонного темного поля лучше, чем метода светлого поля. Конечно, для очень небольших агрегатов из нескольких атомов возникновение контрастности изображения полностью обусловлено эффектом фазового контраста, в то время как для больших частиц наблюдается дифракционный контраст. Флин и др. [26] рассмотрели, насколько фазовый контраст от таких атомных агрегатов определяется условиями фокусировки. В частности, оказалось, что связь между геометрическим расположением атомов-в агрегате и характером расчетного изображения существенно зависит от условий фокусировки и даже качественное соответствие между ними не обязательно. Очевидно, что интерпретацик> изображения, которое на первый взгляд показывает наличие кластера из нескольких атомов, следует принимать с большой осмотрительностью. Прежде всего необходимо детально исследовать изображение в зависимости от дефокусировки. Данное рассмотрение также показывает, что, поскольку речь идет об измерении размера частиц, зависящих от условий фокусировки, связь между истинным и кажущимся размером частиц при их [c.409]

    Отделенная от объекта реплика должна точно воспроизводить рельеф его поверхности, не иметь собственной структуры, различимой в электронном микроскопе, обладать достаточной контрастностью, механической прочностью и химической стойкостью, устойчивостью к воздействию электронного пучка. В идеале метод реплик должен обеспечить получение изображений столь мелких деталей структуры объекта, которые по своим размерам соответствуют разрешающей способности микроскопа. В действительности же такое соответствие не имеет места, так как наряду с улучшением техники изготовления реплик совершенствуются электронные микроскопы и повышается их разрешающая способность. Все же разрый здесь в настоящее время является небольшим — разрешение, на микрофотографиях обычно получаемых углеродных реплик достигает 30, а возможно и 20 А. [c.91]

    Образующиеся при работе микротома срезы поступают в ванночку, наполненную водным раствором спирта. При правильной работе в бинокулярный микроскоп можно наблюдать продвижение сплошно ленты из срезов после каждого акта резания. Полученные срезы желательно рассматривать в электронном микроскопе без поддерживающей пленки во избежание потери разрешения. Это достигается либо помещением среза прямо на сеточку-объектодержатель, либо на микросетку из коллодия, приготовление которой описано ранее. Срезы непористых препаратов пригодны для исследования сразу после получения. В отношении пористых препаратов могут быть различные случаи. Если препарат содержит элементы с большим атомным номером, что обеспечивает высокую контрастность изображения, то нет необходимости удалять продукт полимеризации из пор в срезах и последние также пригодны для [c.118]

    Рве. 19 . Микрофотографии протопластов табаи, полученные с помощью сканирующего электронного микроскопа. Только что выделенный сферический протопласт (Л) сходен с протопластами, изображенными на рис. 16-68. Клеточная стейка полностью удалена, и видна оголенная плазматическая мембрана (С-она же при большем увеличении). Через некоторое время начинается регенерация клеточной стенки (В) на показанной здесь ранней стадии этого процесса на наружной поверхности плазматической мембраны хорошо видна новообразованная сеть целлюлозных микрофибрилл, (С любезного разрешения J, Burgess,) [c.207]

    Интерференционная микроскопия наряду с такими стандартными технич. приложениями, как определение Аи и (или) степени ориентации химич. волокон и пленок, с успехом применяется для исследования диффузии растворителей в полимер (и, соответственно, для изучения кинетики набухания), сложных процессов, связанных с суперпозицией диффузии низкомолекулярного вещества и стимулированной ею кристаллизации полимера, для определения толщины монокристаллов с точностью до нескольких десятых долей нл и прецизионного измерения темп-рного коэфф. линейного расширения. В последнем случае интерференционный микроскоп играет роль дилатометра и его удобно использовать для изучения релаксационных процессов при размягчении и стекловании полимеров. С использованием специальных методов контрастирования на интерференционном микроскопе можно получать стерео-скопич. изображения, не уступающие по четкости и разрешению фотографиям, получаемым на сканирующем электронном микроскопе. Однако круг задач, решаемых этим методом, более ограничен. [c.240]


Смотреть страницы где упоминается термин Электронная микроскопия разрешение изображения: [c.174]    [c.148]    [c.395]    [c.97]    [c.19]    [c.46]    [c.161]    [c.380]    [c.456]    [c.279]   
Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.2 , c.100 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.2 , c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Микроскоп

Микроскоп электронный

Микроскопия

Разрешение микроскопа

Электронная микроскопия

Электронная микроскопия микроскоп



© 2025 chem21.info Реклама на сайте