Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сапонин

    Выполнение работы. Краевой угол смачивания измеряют на установке, описанной в работе 6, гл. I. Пластинку из жести размером 5X5 см опускают в расплавленный парафин и через несколько секунд вынимают пинцетом. Пластинка покрывается тонким слоем парафина. Наносят на нее каплю воды, закрепляют в штативе и устанавливают между осветителем и конденсором (см. рис. 8). Измеряют краевой угол смачивания. Закончив измерение, каплю стряхивают и на сухую поверхность пластинки наносят каплю раствора сапонина с наименьшей концентрацией. Снова измеряют угол смачивания. Далее наносят каплю раствора большей концентрации и производят измерения. Опыт прекращают, когда достигается такая концентрация ПАВ, при которой наблюдается полное растекание капли. Эта концентрация и будет соответствовать точке инверсии. [c.47]


    Многие высокомолекулярные ПАВ (желатин, сапонины, поливиниловые спирты) являются эффективными стабилизаторами эмульсий. Структура защитных слоев здесь совершенно другая, чем у низкомолекулярных ПАВ. Эти слои представляют собой трехмерные сетки, расположенные всегда со стороны непрерывной (дисперсионной) среды. Сетчатые структуры прочны и не разрушаются при разбавлении эмульсий и удалении дисперсионной среды. Высокомолекулярные эмульгаторы также подчиняются правилу Банкрофта, так как трехмерная сетка всегда образуется с той стороны границы раздела, где растворимо высокомолекулярное ПАВ. Эта жидкость и становится непрерывной фазой. [c.456]

    Свойства структуры ВМ ПАВ. Прочность адсорбционных слоев сапонина исследована в работе Трапезникова и Зотовой [30]. В серии работ Ребиндера и Измайловой с сотрудниками [29] изучены реологические свойства поверхностных слоев белков и поливиниловых спиртов, а также показан параллелизм между прочностными [c.425]

    Различные стероиды связываются друг с другом и с сапонином ди гитонином в молекулярные соединения. Аддукты Зр-оксистероидов (но не За-изомеров) с дигитонином, как правило, труднорастворимы в спирте и поэтому используются для идентификации и выделения соответствующих соединений. Сапонины обладают гемолитическими свойствами, тогда как нерастворимые аддукты холестерина с сапонинами такого действия не оказывают. Поэтому холестерин препятствует гемолитическому действию сапонинов в организме. [c.864]

    Препаративное получение прогестерона и других s)-стероидов осуществляют в большинстве случаев, исходя из сапонина, путем разрушения в нем боковой цепи, или из А -стероидов (эргостерин, стигмастерин) окислением с последующим отщеплением С-атома 22. или, наконец, из желчных кислот. [c.877]

    Сердечные гликозиды и сапонины [c.885]

    Внешнее давление, равное приблизительно 2а/7 , задавалось радиусом Я трубочки. В качестве стабилизатора пленок использовался сапонин с концентрацией 5-10" %. [c.182]

    Пипетка на 1 мл. 6. Раствор сапонина, 1%-ный. 7. Колбы, емкость 50 см , 8 шт. [c.47]

    Для изучения готовят раствор сапонина следующих концентраций (в вес. %) 1 0,5 0,2 0,1 0,05 и 0,01. [c.47]

    Далее подводят под пластинку загнутый конец пипетки и выпускают из нее пузырек воздуха. В другую кювету наливают раствор сапонина в воде (0,05—0,1%), так чтобы пластинка была погружена в раствор, и тоже подводят под нее пузырек воздуха с помощью пипетки с загнутым концом. Включают осветитель проекционного фонаря и проектируют на экран пузырьки воздуха в обеих кюветах. [c.212]

    Многими авторами было показано, что чистые жидкости не дают устойчивой пены, только добавка к ним второго компонента может привести к ее образованию. Дистиллированная вода не дает устойчивой пены. Прибавление к ней поверхностноактивных веществ приводит к появлению пены, причем с ростом концентрации поверхностно-активного вещества интенсивность ценообразования увеличивается, проходит через максимум и снова падает для концентрированных растворов. Однако, как показано Ребиндером, такого падения устойчивости с ростом концентрации поверхностно-активного вещества не наблюдается для высокомолекулярных поверхностноактивных веществ (сапонин, белки), когда устойчивость монотонно возрастает с ростом концентрации пенообразователя. [c.167]


    Из других природных эмульгаторов хорошо изучены сапонины и белки — альбумин, казеин и др. Они стабилизируют эмульсии М/В. Стабилизирующее действие белков объясняется их адсорбцией на границе раздела фаз с образованием прочных защитных слоев. В качестве стабилизаторов эмульсий В/М применяют высокомолекулярные соединения, растворимые в масляной фазе, например каучук. В пищевой и фармацевтической промышленности для получения эмульсий В/М применяют стеарат и пальмитат сахарозы, а также полиоксиэтилированные сложные эфиры. [c.184]

    Результат опыта. В первой кювете наблюдается острый краевой угол. Это объясняется тем, что вода не Омачивает парафин и потому основание пузырька воздуха получается большое (рис. 64). Во второй кювете, наоборот, тупой краевой угол, так как раствор сапонина хорошо смачивает парафин. [c.212]

    В зависимости от природы обрабатываемого металла для обезжиривания применяют растворы NaOH или КОН (2—5%), карбонатов и третичных фосфатов щелочных металлов (3—6%), к которым добавляют в качестве моющих и эмульгирующих веществ (3—10 г/л) мыло, жидкое стекло, сапонин, различные синтетические моющие вещества сульфанол, синтанол, препараты ОП-7 и ОП-10 — производные полиэтиленгликолевых эфиров — и др. В последнее время разработаны и применяются специальные технические моющие средства под названием ТМС-31, Ла-бомид , Деталин , Мл-51 и др. Температура растворов должна быть 60—80 °С, продолжительность обезжиривания—от 5 до 20 мин и более. [c.369]

    Замечание. Вместо раствора сапонина можно взять 1%-ный раствор мыла или метилового, пропилового, бутилового спирта в Боде. [c.213]

    Слева вода — воздух — парафин справа раствор сапонина — воздух — парафин [c.213]

    Прочность и продолжительность существования (время жизни) пены зависят от свойств пленочного каркаса, в свою очередь определяющихся природой и содержанием в системе пенообразователя, адсорбированного на межфазной поверхности. К типичным пенообразователям в случае водных пен принадлежат такие поверхностно-активные вещества, как спирты, жирные кислоты, мыла и мылоподобные вещества, белки, сапонин (экстрагируемый из растений глюкозид, обладающий поверхностно-активными свойствами). Существенно, что эти вещества обусловливают и устойчивость эмульсий углеводородов в воде. [c.386]

    Образование защитных слоев на поверхности ртути. Покрыв дно двух кристаллизаторов чистой ртутью, наливают в один из них воды, в другой 1% раствор сапонина или" 0,4% раствор желатина (толщина слоя жидкости над ртутью должна быть примерно в два раза больше толщины слоя ртути). Затем шпателем медленно разрезают ртуть, касаясь дна кристаллизатора. Ртуть под водой сразу же соединяется. В кристаллизаторе же с раствором ее можно разделить на отдельные части. [c.322]

    Для измерения поверхностного натяжения индивидуальных жидкостей пригодны все методы, поскольку между результатами, полученными статическими и динамическими способами, нет заметной разницы. У растворов же результаты измерений о разными методами могут сильно отличаться из-за медленного установления равновесного распределения растворенных веществ между свеже-образованной поверхностью и объемом раствора. Это в особенности относится к растворам мицеллообразующих и высокомолекулярных ПАВ (белковые вещества, сапонины, высшие гомологи мыл). Получение в таких растворах равновесных значений поверхностного натяжения требует применения статических методов. Пригодны и некоторые из полустатических методов, например методы отрыва кольца, счета капель, наибольшего давления пузырьков и др. При простоте и удобстве работы эти методы дают вполне удовлетворительные результаты, если измерения проводят таким образом, что время формирования новой поверхности в виде капли является достаточным для установления концентрационного равновесия. В растворах низкомолекулярных ПАВ равновесные значения а обычно достигаются менее чем за минуту для растворов ПАВ более сложной структуры на установление равновесия может потребоваться до нескольких десятков минут в связи с медленной диффузией их молекул. Таким образом, для правильного выбора метода исследования необходимо учитывать кинетику установления равновесных, т. е. наименьших, значений поверхностного натяжения. [c.311]

    В зависимости от природы золя защитное число называют золотым , если оно относится к золю золота, серебряным — для золя серебра, железным — для золя Ре(ОН) i и т, д. Очевидно, что чем больше величина защитного числа, тем слабее защитное действие данного ВМВ. Наиболее сильным защитным действием обладают белки желатин, казеинат натрия (защитные числа 0,01—ОЛ), а более слабым — крахмал, декстрин, сапонины (защитные числа 20—45). [c.439]

    Пена — коллоидное явление. Это распределение крошечных пузырьков газа в воде. Мыло и особенно сапонин, сильно изменяя поверхностное натяжение воды, придают стабильность пене. [c.75]

    Сапонин. Большой стакан (около 3 л). Стеклянная палочка. [c.75]

    Выполнение. В стакан поместить около 0,5 л раствора карбоната натрия. На кончике шпателя прибавить сапонин и размешать палочкой. Теперь постепенно, не прекращая размешивания, приливать НС1. В стакане растет столб пены, поднимающийся все выше и выше. Пена очень плотная стеклянная палочка стоит в ней. В течение некоторого времени пена не оседает. [c.75]


    Кроме возникновения структурно-механического барьера для сближения частичек — гелеобразной защитной оболочки, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной, т. е. чтобы не происходило агрегирование наружными поверхностями этих оболочек (вторичная коагуляция). Именно таков механизм действия сильных стабилизаторов суспензий, эмульсий и пен, обеспечивающих практически предельную стабилизацию — полную агрегативную устойчивость лиофобных систем. При этом стабилизаторы могут быть и сравнительно слабыми поверхност-но-активными веществами, но уже при небольшой адсорбции они могут образовывать сильно структурированные защитные оболочки. Примером служат глюкозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. [c.70]

    Веп1ества, находящиеся в коллоидном состоянии и способные адсорСироваться в поверхностном слое раствора на границе жидкость — газ, называются пенообразователями. К таким веществам относятся экстракты лакричного корня, сапонин, никель, керосиновый и другие контакты, альбумины и др. Широкое применение находят два вида устойчивых огнегасительных пен химич еская и воздушно-механическая. [c.443]

    Химическую пену получают из так называемого пеногенераторного порошка, в состав которого входят сернокислотный алюминий А12(504)з, бикарбонат натрия NaH Os и поверхностноактивные вещества (сапонин или экстракт солодкового корня). При растворении пеногенераторного порошка в воде (обычно [c.220]

    ВМ ПАВ широко распространены как стабилизаторы в природных и синтетических эмульсиях. Такие стабилизаторы как желатпна, агар-агар, сапонин известны давно, однако теория ВМ ПАВ развита слабо. Наибольшее число фактов собрано об оболочках жировых шариков молока [18[. [c.422]

    Ангеликовая кислота в виде эфира содержится в корне дягиля (Angeli a ar hangeli a] и в масле римской ромашки (т. кип. 185° т. пл. 45°). Тиглиновая кислота выделена из кротонового масла и масла римской ромашки ее образование неоднократно наблюдалось также при разложении различных природных соединений (сапонины, вера-трин и др.) (т. кип, 198° т. пл. 64,5"). [c.258]

    Сапонины представляют собой весьма распространенные в растениях соединения сложного строения, образующие в воде коллоидные растворы, снижающие поверхностное натяжение воды и, подобно мылам, образующие пену. Они отличаются сильным гемолитическим действием и поэтому при внутривенном введении представляют собой сильные яды. Способность сапонинов понижать поверхностное натяжение, вероятно, обусловила в прошлом применение сапонинсодержащих растений для ловли рыб уже незначительное количество сапонинов убивает рыб. Некоторые сапонины, особенно дигитонин, образуют с холестерином и другими Зр-оксистероидами очень трудно растворимые осадки. [c.889]

    Сапонины являются гликозидами. Их агликоны (сапогенины) принадлежат к двум различным группам первая дает при дегидрировании метилциклопентенофенантрен и, следовательно, по своему строению близка к стеринам вторая дегидрируется селеном с образованием [c.889]

    ПАВ, образующие гелеобразную структуру в адсорбционном" слое и в растворе, относятся к третьей группе. Такие вещества предотвращают коагуляцию частиц, стабилизируют дисперсную фазу в дисперсионной среде, поэтому их называют стаб илиз а-торами. Механизм действия сильных стабилизаторов состоит в том, что, кроме возникновения структурно-механического барьера для сближения частиц, важное условие стабилизации состоит в том, чтобы наружная поверхность такой оболочки была гидрофильной и чтобы не могло произойти агрегирования вследствие соприкосновения наружных поверхностей. Стабилизаторами могут быть сравнительно слабые ПАВ, так как даже при слабой адсорбции они могут образовывать сильно структурированные защитные оболочки. К числу ПАВ, обычно применяемых в качестве стабилизаторов, относятся гликозиды (сапонин), полисахариды, высокомолекулярные соединения типа белков. Стабилизаторы не только препятствуют агрегированию частиц, но и предотвращают развитие коагуляционных структур, блокируя путем адсорбции места сцепления частиц и препятствуя тем самым их сближению. Поэтому стабилизаторы суспензий являются также адсорбционными пластификаторами. Последние нашли очень широкое применение в гидротехническом строительстве, керамическом производстве, сооружении асфальтовых дорог, инженерной геологии, сельском хозяйстве с целью улучшения структуры почвы и др. [c.35]

    САПОНИНЫ — распространенная в растениях группа гликозидов, образующих с водой легкопенящиеся коллоидные растворы. Пенообразование наблюдается уже при концентрацип С. 0,001 г/л. С.— ядовитые, особо ядовитые С. называются сапотоксипами. С. в чистом виде бесцветные или желтоватые аморфные вещества, которые при растворении в воде образуют коллоидные растворы. С. ограниченно применяют в качестве моющих средств эффективных и при использовании и<ес 1кой воды, как составные части жидких мыл, шампуней, кремов и др. в пищевой промышленности при производстве шипучих напитков, пива, кондитерских изделий. С. содержатся во многих лекарственных препаратах растительного происхождения. С. и его производные широко применяют как дешевое сырье для получения стероидных гормонов. [c.218]

    Влияние природы поверхностно-активных веществ на устойчивость пен начали изучать в 20-х годах XX в. О. Барч, исследуя устойчивость пен растворов низкомолекулярных спиртов и жирных кислот в воде, показал, что максимуму устойчивости пены отвечает определенная концентрация пенообразователя. Концентрация, при которой наблюдается максимум устойчивости пены, как правило, снижается с увеличением числа углеродных атомов в гомологическом ряду. Например, в ряду спиртов в оптимальной концентрации этилового и октилового спиртов соответственно равны 0,3 и 3-10 М, а в ряду кислот концентрации масляной и каприловой равны 1 и 2,5-10 М. В отличие от низкомолекулярных спиртов и органических кислот другая группа пенообразователей, к которой относятся мыла, сапонины (гликозиды, выделяемые из растений) и белки, способствует образованию пен в водных растворах, устойчивость которых непрерывно повышается с ростом концентрации. [c.192]

    Особенностью пен как ячеистых систем является резкое различие кривизны жидкости в пленке в тех участках, где сходятся три пленки (эта область называется областью Плато), образуя ребра. Как было показано при описании поверхностных явлений, гидростатическое давление в жидкости тем меньше, чем больше кривизна ее поверхности. Поэтому жидкость отсасывается из пленок в области Плато и они становятся тоньше. Под действием силы тяжести жидкость стекает вниз. Плато объяснял устойчивость пен тем, что вследствие вязкостного эффекта пленки утончаются медленно. Эти представления были развиты П. А. Ребиндером для пеноообразования в растворах мыл, сапонинов и белков. По П. А. Ребиндеру, структура, образующаяся в пленках, препятствует разрушению пленок. [c.193]


Смотреть страницы где упоминается термин Сапонин: [c.435]    [c.117]    [c.425]    [c.889]    [c.889]    [c.889]    [c.1198]    [c.81]    [c.211]    [c.213]    [c.305]    [c.322]    [c.230]   
Органическая химия. Т.2 (1970) -- [ c.104 , c.558 ]

Курс коллоидной химии (1976) -- [ c.0 ]

Справочник биохимии (1991) -- [ c.236 ]

Химия коллоидных и аморфных веществ (1948) -- [ c.189 , c.261 , c.274 , c.275 ]

Органическая химия Углубленный курс Том 2 (1966) -- [ c.98 , c.545 ]

Химия инсектисидов и фунгисидов (1948) -- [ c.250 ]

Основы химической защиты растений (1960) -- [ c.115 , c.131 ]

Поверхностно-активные вещества (1953) -- [ c.284 ]

Поверхностноактивные вещества и моющие средства (1960) -- [ c.0 ]

Ингибиторы коррозии металлов Справочник (1968) -- [ c.0 ]




ПОИСК







© 2024 chem21.info Реклама на сайте