Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сетчатая структура

    В реакциях полимераналогичных превращений образование сетчатых структур является следствием побочных процессов, которые стараются, по возможности, предотвратить, чтобы сохранить линейность макромолекул. Однако проводят и такие процессы химического превращения, в результате которых из первичных линейных полимеров получаются полимеры сетчатой структуры. Такое сшивание , или вулканизацию , линейных полимеров проводят либо в концентрированных растворах полимера, либо при нагревании его до вязкотекучего состояния. Для ускорения процесса межмолекулярного взаимодействия повышают температуру и давление. [c.177]


    К природным неорганическим ионитам относят кристаллические силикаты типа цеолитов шабазит, глауконит и др. Их каркас представляет собой правильную сетчатую структуру алюмосиликата, в порах которой располагаются ионы щелочных или щелочноземельных металлов, выступающие в роли противоионов. Некоторые минералы, например апатит, способны к обмену анионов. [c.164]

    Так как смазочные масла при наличии около одного процента твердого парафина могут застывать при температуре от 10 до 20°, то ясно, что при этом образуется кристаллическая сетка. Такое же количество парафина, выделяемого в виде крупных кристаллов, может приводить к застыванию и при более низкой температуре. В соответствии с теоретическими представлениями о действии депрессантов эти вещества легко адсорбируются на поверхности мелких кристаллов парафина, задерживая или предотвращая их рост в виде сетчатой структуры [7]. Действие природных и синтетических депрессантов осложняется и становится ненадежным при слабом нагревании. Так, при повторном нагревании охлажденного масла, содержащего депрессант, и при последующем охлаждении масло застывает при более высокой температуре, чем при первом охлаждении [И]. Теория действия депрессантов далеко еще не ясна и не может считаться удовлетворительной. [c.45]

    Методом электронной микроскопии исследованы образцы исходных сточных вод. Полистирол образует единичные, шарообразной формы частицы размером 0,06-0,6 мкм и агрегаты частиц размером 0,5-1,5 мкм, ПВС образует пространственную рыхлую сетчатую структуру. Электро-кинетический потенциал частиц полистирола при 20 °С составляет —9 — -11 мВ. Увеличение концентрации ПВС в растворе, так же как увеличение числа ацетатных групп в молекулах, приводит к повышению стабильности стирольной дисперсии. [c.98]

    Трехмерные структуры, образующиеся вблизи точки геля, имеют весьма несовершенную сетчатую структуру с огромным количеством свободных концов. [c.26]

    По теории радикальной полимеризации [15] наличие двойных связей приводит к образованию перекрещивающихся цепей и, далее, трехмерных сетчатых структур. Следовательно, чем меньше непредельных и, особенно, диеновых структур, тем длиннее должны быть цепи карбоидных линейных структур. [c.27]

    Для понимания механизма образования осадков могут быть полезны сведения об электронномикроскопическом исследовании структуры дизельного топлива [112]. Согласно литературным данным, моторные топлива рассматриваются в качестве полидисперсных коллоидных систем, в которых смолисто-асфальтеновые вещества находятся в растворенном или коллоидно-дисперсном состоянии. А дисперсная фаза в дизельных топливах существует в виде плотной сетчатой структуры, под микроскопом она выглядит в виде волнистой поверхности и при окислении подвергается действию кислорода [112]. Установлено, что при введении (или образовании) соединений с полярными группами структура дизельного топлива разрушается на отдельные фрагменты, которые коагулируют, что приводит к смолообразованию в системе. В свою очередь, присутствие в дизельном топливе частиц размером 0.2-1.2 мкм резко ухудшает его качество. [c.146]


    Из рис. 61 видно, что существует четкая связь между временем нахождения нефти в зазоре и вязкостью, которая зависит от свойств нефти и величины зазора между твердыми поверхностями. С увеличением времени выдержки изменение вязкости происходит по кривой, стремящейся к насыщению. Подобная зависимость характерна для систем, в которых формируется сетчатая структура. Процесс структурообразования в подобных системах может быть охарактеризован предельным значением вязкости т] .  [c.118]

    Сопоставление эмульгирующих свойств различных ВМ ПАВ позволяет сделать вывод [27], что во всех случаях ВМС стабилизируют эмульсии, образуя трехмерную сетчатую структуру с очень близкими геометрическими свойствами. Существование этой структуры подтверждается независимыми методами и результатами различных исследователей. [c.425]

    Априорным требованием к ВМ ПАВ является наличие в цепи чередующихся гидрофильных и гидрофобных групп, которые предопределяют как адсорбцию ВМС на границе раздела, так и образование сетчатых структур у поверхности. [c.425]

    Полиакриловая кислота приобретает сетчатую структуру после реакции с небольшим количеством этиленгликоля или с солями двухвалентных металлов  [c.180]

    По мере протекания полимеризации с сопряженными двойными связями, например бутадиена, число боковых цепей растет и в конечном итоге приводит к исчерпывающему структурированию. По этой причине в промышленном производстве синтетического каучука полимеризацию обрывают при 60% конверсии, так как полимеры сетчатой структуры уже не поддаются обработке. [c.944]

    III. Реакции, приводящие к увеличению макромолекулы (удлине ние цепи, образование блокполимеров, боковых цепей или сетчато структуры). Они уи<е были рассмотрены при описании синтеза высоко молекулярных веществ. [c.949]

    Используя метод сополимеризации, можно получать сополимеры сетчатой структуры. Для этого один из исходных мономеров должен содержать в молекуле две двойные связи. Каждая из двойных связей такого мономера принимает участие в росте отдельных цепей макромолекул, соединяя их между собой. Примером подобного процесса с образованием. макромолекул сетчатой структур . может служить сополимеризация стирола и дивинилбензола [c.121]

    Следует подчеркнуть, что спонтанно образующийся в небольших количествах микро- либо макрогель является, как правило, очень рыхлым — лишь ничтожная доля имеющихся в геле узлоа является эластически активной, т. е. участвует в образовании сетчатой структуры [32, 40]. Такой гель легко разрушается в процессе переработки синтетических каучуков и поэтому сравнительно мало влияет на свойства резиновых смесей и вулканизатов. [c.67]

    Дальнейший процесс старения сопровождается ростом кристаллических частиц и образованием агрегатов из них, бо гьшей частью в виде цепочечных или сетчатых структур. [c.532]

    Противоположным предельным структурным типом являются полимеры о заглкнутой пространственной сетчатой структурой, где макромолекулы образованы мономерами, виещаии болев двух активных связей, в результате чего получается двух- или трехмерная молекула. Основные ковалентные связи соединяют все звенья структуры, поэтОцу данные материалы лишь незначительно размягчаются при нагреве и разлагается перед респлавлением. Такие полимеры являвтся основой термо- [c.18]

    Для синтеза полиэфирных смол могут применяться ненасыщенные спирты и кислоты. Промышленное значение имеют ненасыщенные полиэфиры, получаемые поликонденсацией гликолей с малеи-новым и фталевым ангидридами. Ненасыщенные полиэфиры способны в определенных условиях ог-верждаться (образовывать сетчатые структуры). Макромолекулы линейных ненасыщенных полиэфиров могут сшиваться также при введении мономеров (стирола, бутадиена). [c.73]

    Такано (1964) сравнил реологические данные, полученные при простом и колебательном сдвигах на одних и тех же суспензиях. Он нашел, что для псевдопластичных систем кажущаяся вязкость прп низких скоростях сдвига подобна динамической вязкости, измеряемой при низких частотах. Для пластичных систем, однако, наблюдались расхождения между двумя рядами данных, причем кажущаяся вязкость при низких скоростях сдвига иногда была выше, чем динамическая вязкость при низких частотах. Эти расхождения приписывались различным путям, которыми разрушались и восстанавливались сетчатые структуры флокулированных частиц под влиянием простого и колебательного сдвига .. . зависимость кажущейся вязкости от скорости сдвига связана со структурными изменениями сетчатой системы, вызваннымп сдвигающими силами, в то время как частотная зависимость динамической вязкости проистекает главным образом от релаксации сетчатых структур, образованных частицами в среде . [c.223]


    С и 13 % Сг, обладает минимальной устойчивостью к ит-тингу и общей коррозии в 3 % растворе Na l при комнатной температуре после отпуска при 500 °С. Для аналогичной стали, содержащей 0,06 % С, тот же эффект наблюдается в результате отпуска при 650 °С [10]. В общем случае, если возможно, следует избегать отпуска сталей при температурах 450—650 С. Понижение коррозионной стойкости при отпуске, по-видимому, отчасти обусловлено превращением мартенсита, содержащего углерод внедрения. В результате образуется сетчатая структура включений карбида хрома, и обедняется хромом прилегающая металлическая фаза. [c.302]

    Ионообменные смолы получают дву> я методами поликонденсацией нли полимеризацией. В обоих методах процесс синтеза состоит из трех стадий 1) получение линейных полимеров, 2) образование сетчатой структуры из отдельных линейных полимеров с помощью мостнкообразователей, 3) введение в макромолекулы активных (ионогекных) групп. Активные группы могут находиться уже в исходном мономере или их вводят в него перед построением матрицы. В качестве примера синтеза катионообменных поликоп-денсационных смол можно привести поликонденсацию фенола с формальдегидом  [c.165]

    Таким образом, сантопур обладал двойным действием разрыхлением сетчатой структуры кристаллов й соШранием отдельных кристаллов в друзы. Исс-ледования Т. П. Шузе [101 показали, что и-парафпновые углеводороды, кристаллизующиеся из раство- [c.108]

    Бисвас и Хейдон получили двумерные релаксационные кривые предела текучести пленки методом Тачибана и Инокучи (1953) и выразили их в форме реологической модели Максвелла — Войгта, определив таким образом цифровые данные для коэффициентов эластичного сдвига и вязкости. В действительности они нашли, что эти две величины тесно связаны. Это объясняется образованием молекулами протеина сетчатых структур. Каждый из двух параметров может быть рассмотрен при анализе связи стабильности с коалесценцией (табл. П.1). [c.111]

    Водорастворимый биополимер ХЗ, образующийся при воздействии бактерий рода ксантомонас па углеводы, представляет собой соединение со сложной химической структурой. Выпускается н порошкообразном виде. Биополимер ХЗ обеспечивает необходимую вязкость в пресной, морской воде и в насыщенных растворах солей одно- и двухвалентных металлов без применения иных присадок. Кажущаяся вязкость увеличивается прямо пропорционально концентрации биополимера, независимо от базисной жидкости. Структурная вязкость также увеличивается с повышением концентрации биополимера, но более ярко выражена при высоком содержании солей. Прочность геля в насыщенном солевом растворе значительно ниже, чем в пресной и морской воде. Добавки биополимера ХЗ снижают также водоотдачу пресных и минерализованных промывочных жидкостей, но с ростом минерализации в меньшей мере. Для более эффективного снижения водоотдачи сильноминерализованных безглинистых или малоглинистых промывочных жидкостей могут быть применены КМЦ, крахмал, лигносульфонаты и др. Вязкость водных растворов может быть значительно повышена путем образования сетчатой структуры (сшивки) биополимера. Такая сшивка наиболее эффективно происходит при введении в водный раствор биополимера, при надлежащем регулировании величины pH, солей трехвалентного хрома. Щелочность среды относительно слабо влияет на кажущуюся вязкость в широких пределах величины pH (от 7 до 12). [c.154]

    Получены химические доказательства сетчатой структуры ВМ ПАВ на поверхности раздела стабильных высококонцентрированных и концентрированных эмульсий [4], а также определены геометрические показатели этих структурных образований. Методика работы была следующей. Из 1 мл водного раствора частично ацетилирован-ного поливинилового спирта определенной концентрации получали высококонцентрированную предельную эмульсию по методике Кремпева [28]. Микроскопически определяли площадь поверхности всех капель эмульсии (Sea). Эта величина по мере возрастания концентрации ВМ ПАВ проходит через максимум, лежащий в области — 5% ПВС в воде. До этого значения концентрации поверхность эмульсии, отнесенная к общему числу звеньев полимера ь i мл раствора, остается постоянной, а следовательно, и толщина адсорбционного слоя (б) сохраняет постоянное значение. При концентрациях более высоких, чем 5% ПВС величина Sпонижается, а б резко возрастает. [c.423]

    Молекулы ВМС в адсорбционном слое не люгут иметь ни вертикальной, ни горизонтальней ориентации по чисто геометрическим параметрам, так как толщина прослойки между каплями меньше длины молекулы ВМ ПАВ, а на площадп, приходящейся на одну молекулу ПАВ, может разместиться меньше 10% всех звеньев. Следовательно, возможна или сетчатая структура, построенная из беспорядочно переплетенных цепей полимерных молекул, или структура из свернутых в клубок полимерных молекул. Последнее исключается, так как показано [4] на разных образцах полимера, что эмульгирующие свойства ВМС не зависят от молекулярного веса в случае одинаковой дисперсности эмульсий. [c.424]

    Имеется и другое доказательство в пользу сетчатой структуры [24]. В защитном слое непредельной эмульсии иногда присутствуют молекулы ВМС, не соприкасающиеся с поверхностью раздела фаз. Доказывается это опытами по адсорбции на капельках разбавленной эмульсии, которую определяли по понижению межфазного натяжения в системе жидкость — жидкость до и после эмульгирования. В ряде случаев адсорбировалось такое количество ВМ ПАВ, которое не могло разместиться на поверхности даже при насыщенном мономолскулярном слое. [c.424]

    В табл. 48 приведены данные по поликонденсации глицерина с одно- и двухосновными кислотами, из которых видно, что неплавкие и нерастворимые смолы, обладающие сетчатой структурой, образуются лишь при конденсацр. двухосновных кислот с глицерином. [c.489]

    Такая сетчатая структура при гидролизе будто бы прежде всего кетонизируется с разрывом —N—С-мостиков (дезагрегация моле- [c.542]

    Крашение шерсти напоминает процессы, протекающие в ионообменных смолах. Кератин шерсти, образующий за счет остатков цистина сетчатую структуру, является цвиттерионом. В качестве основания он обладает эквивалентным весом 1200 и окрашивается в уксуснокислом растворе красителями, имеющими кислотные группы. В результате двойного обмена соли шерсти с натриевой солью сульфо-кислотного красителя последний связывается в виде соли и в процессе крашения примерно при 90° медленно диффундирует в шерстяное волокно. Небольшие молекулы красителя, например моноазосоединения или производные аминоантрахинона с одной сульфогруппой в молекуле, дают очень ровные выкраски по шерсти соединения с двумя сульфо-группами закрепляются сильнее и поэтому более прочны к стирке (суп-раноловые или полярные красители), но зато дают менее ровные выкраски. Большое значение для крашения шерсти имеет, кроме того, способность некоторых красителей (см. стр. 608) образовывать с солями хрома комплексные соединения, очень прочные к стирке и свету. [c.600]

    При синтезе высокомолекулярных веществ из бифункциональных соединений образуются (если не учитывать побочных реакций) линейные макромолекулы. Использование соединений с числом функциональных групп более двух приводит к разветвленным макромолекулам. Полимеры с разветвленной цепью еще сохраняют растворимость и, следовательно, их можно исследовать теми же методами, что и растворимые линейные высокомолекулярные вещества. Однако по мере того как реакция соединения олигофункциональных компонентов приводит к образованию новых разветвлений, все большее число образовавшихся сначала макромолекул связывается друг с другом, и в конечном итоге образуется сеть связанных между собой молекулярных цепей. Такие высокомолекулярные вещества сетчатой структуры нерастворимы, а иногда даже очень ограниченно набухают. Поэтому их нельзя уже исследовать и характеризовать с помощью методов, применяемых для исследования растворимых высокомолекулярных веществ. [c.930]

    Аутоокислительная деполимеризация макромолекул усложняется тем, что молекулярный кислород помимо разрьща цепей вызывает еще и их сшивание, приводя к образованию сетчатой структуры. [c.950]

    Температуру стеклования и температуру текучести полимс[)а можно повысить, превращая линейный полимер в сетчатый с малым количеством поперечных связей или увеличивая жесткость его цепей. Сетчатая структура образуется в результате процесса вулканизации линейного полимера или частичного окисления его. Сетчатую структуру можно создап. и путем совместной поли- [c.44]

    Изменение свойств полимера путем увеличения размеров макромолекул и изменения их структуры, например, в результате превращения линейного полимера в полимер сетчатой структуры. Этот метод назван методом костикообразования, или сшивания линейных полимеров. Ко второму направлению может быть отнесен также синтез новых полимеров путем блоксопо-лимеризации и привитой сополимеризации. [c.170]

    Как и парафины, полиэтилен при на1рева нии на воздухе подвергается медленному окислению (старению). Поглощение первых доз кислорода вызывает еиижеиие молекулярного веса полимера и температуры его размягчения. В макромолекулах появляются альдегидные и кетонные группы. При нагревании частично окисленного полиэтилена молекулярный вес ого увеличивается в результате соединения макромолекул кислородными мостиками. Таким образом, процесс старения полиэтилена сопровождается изменением не только химического состава макромолекул, ио и их структуры. В процессе старения полиэтилен приобретает сетчатую структуру и потому становится нерастворимым. При этом происходит также потеря эластических и пластических свойств полиэтилена. Пленка становится жесткой и хрупкой. Солнечный свет илп ультрафиолетовое облучение епо-еобствуют ускорению процесса окисления полиэтилена. [c.211]

    Для повышения прочности полимера и п )идания ему большей перастворимости, а также для более надежного сохранения формы изделия, находящегося под нагрузкой при повышенных температурах (формоустойчивость), с одновременным сохранением высокоэластических свойств хлорсульфонированному полиэтилену придают сетчатую структуру путем соединения макромолеку/  [c.223]

    Поливинилхлорид, нагретый в атмосфере азота, также приобретает сетчатую структуру. В присутствии щелочей или щелочных металлов скорость отщеп 1епия хлора от полимера возрастает. [c.269]

    Феноло-формальдегидные полимеры содержат гидроксильные группы, которые не принимают участие в реакции поликонденсации. Эти гидроксильные группы полиметиленфенолов вступают в реакции, характерные для гидроксильных групп низкомолекулярных фенолов, но сетчатая структура макромолекул полимера, возникнснение водородных связей между макромолекулами и соседними звеньями, нерастворимость полимера затрудняют проникание реагирующих веществ к отдельным звеньям макромолекул. [c.386]


Смотреть страницы где упоминается термин Сетчатая структура: [c.284]    [c.171]    [c.255]    [c.470]    [c.470]    [c.22]    [c.100]    [c.220]    [c.108]    [c.269]    [c.96]    [c.223]    [c.245]   
Основы химии полимеров (1974) -- [ c.93 ]

Введение в химию высокомолекулярных соединений (1960) -- [ c.210 , c.211 , c.234 ]




ПОИСК







© 2025 chem21.info Реклама на сайте