Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллическая структура коллоид ных частиц

    Против такого жесткого разделения химических веществ на коллоиды и кристаллоиды высказался в 60-х годах XIX в. профессор Киевского университета И. Г. Борщов (1833—1878), который независимо от Грэма дал определение сущности коллоидного раствора (золя и коллоидной частицы. В частности, ои выдвинул идею о кристаллической структуре коллоидных частиц, высказал близкое к современному представление о коллоидной мицелле и наличии определенной связи между поверхностью коллоидных частиц и молекулами растворителя. Работы И. Г. Борщова позволяют считать его зачинателем русской коллоидной химии и одним и основоположников коллоидной химии как науки вообще. [c.280]


    Известный ботаник И. Г. Борщев еще в 1869 г. высказал положение, что частицы некоторых коллоидов могут обладать и кристаллической структурой. [c.347]

    Коллоидные частицы — это конгломераты молекул, распределенные в дисперсионной среде. Размеры коллоидных частиц составляют от 1 до 100 мкм. Старые представления о разделении всех веществ на кристаллоиды (вещества, способные кристаллизоваться) и коллоиды в настоящее время приходится отвергнуть. Оказалось, что молекулы диспергированной фазы большинства коллоидных растворов кристалличны. Они могут образовывать как типично кристаллические золи (золото), так и аморфные (раствор желатины в воде). С помощью рентгеноструктурных исследований установлено, что сажа (аэрозоль) имеет кристаллическую структуру графита. Коллоидные частицы золота, серебра, многих гидратированных окислов и ряд других веществ также кристалличны. В растворе могут образовываться агрегаты молекул растворенного вещества с таким же размещением в объеме как и в кристаллической структуре. Такие комплексные группировки являются зачатками кристаллических зародышей. [c.272]

    Несколько лет назад 3. Я. Берестнева и В. А, Каргин проделали очень убедительные эксперименты по электронографическому и электронно-микроскопическому исследованию процессов получения типичных лиофобных коллоидов. Было показано, что образованию кристаллических коллоидных частиц всегда предшествует выделение глобулярных и пленочных аморфных структур. Эти эксперименты могут быть истолкованы как доказательство того, что указанные системы, подчиняясь правилу фаз и соответственно законам равновесия смесей аморфных веществ (жидкостей), в определенных условиях распадаются на равновесные фазы, в которых лишь после этого совершается процесс дальнейшего превращения в кристаллические осадки. Подобное представление о механизме образования коллоидных золей может быть распространено и на случаи образования гелеобразных коллоидных систем из неорганических веществ. [c.23]

    Против этого утверждения выступил профессор Киевского университета И. Г. Борщов (1869 г.). Его по справедливости атедует считать ие только зачинателем русской коллоидной химии, но и одним из основ оположни ков коллоидной хим ии как 1науки вообще. В своем сообщении о свойствах и строении коллоидных веществ, участвующих в образовании растительных и животных организмов, Борщов в ооновных положениях был ближе к истине, чем Грем. В противоположность последнему он высказывает утверждение о единстве коллоидов и кристаллоидов, выдвигает идею о кристаллической структуре коллоидных частиц и представл йнне о мицелле, указывая на наличие -связи поверх ности коллоидных частиц с растворителем. [c.201]


    Структурно-механическая стабилизация — надежный фактор устойчивости коллоидов и находит широкое производственное применение. В качестве примера можно указать на стабилизацию суспензий минеральных вяжущих строительных материалов (цемента, извести, гипса) в процессе их гидратационнйго твердения—стабилизацию, осуществляемую различными поверхностно-активными веществами лигносульфонатами кальция (пластификатор ССБ), олеиновой кислотой и органическими соединениями типа полуколлоидов. Небольшие добавки этих веществ содействуют адсорбционному и химическому диспергированию при гидратации и гидролизе твердых частиц (см. гл. V) и изменяют кристаллическую структуру (адсорбционное модифицирование). Так, например, в трехкальциевом алюминате ЗСаО-АЬОз (составная активная часть цемента) происходит изменение от правильных гексагональных табличек до ните- и палочкообразных частиц, тонких иголочек. В результате в системе накапливается коллоидная фракция, резко возрастает скорость гид- [c.128]

    При таких превращениях адсорбционных систем наблюдаются некоторые переходные фазы, играющие определенную роль в химии глии. В этих фазах кристаллический рост может происходить только в одном или двух направлениях, по которым образуются микро- или макроскопические кристаллиты, в то время как по другим направлениям система остается коллоидно-дисперсной. Таким образом могут образоваться одномерные коллоиды с типичными физико-химическими свойствами, принадлежащие частично к области коллоидной химии, а частично к области кристаллографии. Уже в 1918 г. Марцели получил мелкие, чрезвычайно тонкие чешуйки слюды. Моиомолекулярный слой в этих кристаллах в направлении его поверхности может быть даже макроскопических размеров. Для таких продуктов существенно, что трехмерный рост их кристаллов затруднен, например, высокой вязкостью среды, в которой они растут. Поэтому такие аномалии развития кристаллов часто наблюдаются при зарухании вязких расплавов стекла или при разделении компонентов в густых коллоидных гелях. Материалы, состоящие преимущественно из таблитчатых или игольчатых частиц, могут, таким образом, оставаться истинными коллоидами в одном или двух направлениях. Особенно важный пример такого рода привел Уэрри , обнаруживший истинные коллоиды в естественном бентоните, образованном в процессе кристаллизации вулканических стекол (пеплы, пемзы) и последующей гидротермальной переработки, содержащем типичные микроскопические реликтовые структуры . Бентониты, состоящие преимущественно из монтмориллонита, имеют сходное с коллоидными гелями свойство сильно набухать и обладают такой же пластичностью во влажном состоянии и высокой адсорбционной способ-ностьюЧ Они отчетливо двупреломляют, что прежде принималось за явление внутреннего натяжения, тогда как, согласно Ларсену, двупреломление объясняется их кристаллической структурой. Если сухой бентонит растереть с иммерсионной жидкостью, то будет наблюдаться ясная интерференционная картина в сходящемся поляризованном свете двуосных кристаллов с малым углом оптиче- [c.307]

    Работы Грэма, открывшие новый, до него не исследованный мир веществ, пробудили огромный интерес к их изучению. В противоположность господствовавщим в то время в науке взглядам Грэма, который видел в коллоидах особый мир веществ, и которые заставили его последователей искать эти новые вещества, русская коллоидная наука шла по пути установления общих закономерностей. Так, еще в 1869 г. в очень обстоятельной работе Борщов исследовал скорость диффузии коллоидов и в противоположность Грэму развил взгляды на эти системы не только как на системы многофазные, но и утверждал кристалличность структуры коллоидных частиц. В работе Борщова было впервые установлено, что между величиной частиц различных коллоидов и скоростью их диффузии существует обратная зависимость. Однако его последователи не пошли по этому пути. Влияние взглядов Грэма было так велико, что потребовалось около 40 лет (с 1865 до 1904 г.), чтобы показать и до1кав13 ть всю ограниченность его представлений, несостоятельность его классификации. И это тем более удивительно, что как Грэму, так и, особенно, его последователям удалось получить в виде коллоидов не только вещества, существующие в природе предпочтительно в аморфном состоянии, но и ряд веществ, имеющих ясно выраженное кристаллическое строение, как АЬОз, ЗЮг, РегОз и др. Значительно позже Борщова Зигмонди также отметил кристаллическое строение коллоидных частиц приготовленного им золя золота, однако оп не сделал из этого достаточно ясного вывода относительно строения коллоидных частиц вообще. Потребовалось 40 лет непрерывной работы для того, чтобы создать почву для пересмотра грэмовских взглядов, в конечном результате русскому ученому Веймарну удалось развить правильные представления, разбившие до основания концепцию Грэма. [c.13]

    Суспензоиды, или необратимые коллоиды, лио-фобныеколлоиды имеют в качестве дисперсионных частиц металлы, оксиды металлов, их сульфидов, гидроксидов, других солей. Частицы дисперсной фазы имеют кристаллическую структуру, аналогичную структуре компактного вещества. Суспензоиды не могут длительно существовать без стабилизатора. Необратимыми они являются потому, что осадки, полученные после выпаривания, не образуют вновь золей при введении в дисперсионную среду. Для стабилизации таких коллоидных растворов применяют защитные коллоиды — высокомолекулярные соединения (белки, поливиниловый спирт и др.). [c.100]


    Имеются и другие причины образования мелкокристаллических гладких осадков в присутствии коллоидов и комплексных солей. При взаимодействии металлических ионов с коллоидными частицами могут образоваться сложные положительно за(ряженные частицы, причем перемещение этих частиц к катоду происходит катафоретически, с образованием покрытия с совершенно незаметной кристаллической структурой. [c.669]

    Броуновским суперпарамагнетизмом называют явление намагничивания магнитньгх коллоидов путем ориентации самих частиц вместе с вмороженным в их тело магнитным моментом. При подходящих условиях зависимость намагниченности от напряженности поля одинакова как при неелевском, так и при броуновском парамагнетизме. Вместе с тем имеются и существенные качественные различия в поведении систем с твердой и жидкой средой. Неоднозначно влияние температуры на магнитную восприимчивость твердых магнитных коллоидов. С одной стороны, согласно формуле (3.9.105), повышение температуры облегчает вращательную диффузию и тем самым увеличивает магнитную восприимчивость коллоидной системы. Но с другой стороны, это ведет к уменьшению значения аргумента функции Ланжевена в формуле (3.9.104) и к уменьшению восприимчивости. Температурная зависимость восприимчивости (намагниченности) твердых магнитных коллоидов является одним из способов нахождения константы анизотропии или размера магнитных частиц. При достаточно низкой температуре вращательная диффузия магнитных моментов практически отсутствует (магнитные моменты вмораживаются в кристаллическую решетку частицы). Это ведет к потере суперпарамагнетизма и к появлению магнитно-жестких свойств — способности вещества сохранять приобретенную в магнитном поле намагниченность и после выключения поля. Благодаря такой особенности некоторые вещества (например, глина с примесью оксидов железа, красный кирпич) сохраняют в себе отпечаток геомагнитного поля, действовавшего на них в моменты повышенной температуры (при остывании вулканической породы, при последнем протапливании печи или при пожаре и т. д.). На магнитной памяти веществ основан палеомагнетизм — наука о магнитном поле Земли в геологически отдаленные времена. В структуре дисперсных материалов зашифрованы также сведения о физико-химических условиях их возникновения, и это относится не только к магнитным дисперсным системам. Наличие магнитных свойств дает не только дополнительную информацию об условиях возникновения материала, но и дополнительные средства расшифровки его структурного состояния. Осадочные горные породы в свое время сформировались при свободной коагуляции и оседании частиц в сильно разбавленных взвесях морей и океанов. Они представляют собой своеобразную летопись геологических эпох, которая пока еще полностью не расшифрована. [c.668]

    Несомненно, что частицы лиофобных коллоидов являются агрегатами, состоящими из большого количества молекул, причем в большинстве случаев агрегатами кристаллическими. Такие системы являются системами термодинамически неустойчивыми, и для них состояние равновесия соответствовало бы переходу всего коллоидно диспергированного вещества в монокристалл. Стабильность этих систем определяется существованием на их поверхности адсорбционных слоев, образующихся при адсорбции электролитов, а в некоторых случаях существованием сольватного слоя. В этом случае с дисперсионной средой взаимодействует не все вещество коллоида, а. лишь та его часть, которая расположена на поверхности. Остальная же часть вещества, слагающего коллоидную частицу, остается неизменной при лвзбых изменениях состава дисперсионной среды и по своей структуре и свойствам аналогична любому небольшому участку того же вещества, находяпз егося в макросостоянии. Наличие таких кристалликов в лиофобных системах было особенно убедительно доказано Вейзером [2]. Такие кристаллики обладают всеми свойствами фазы, а содержащий их раствор является микрогетерогенным. [c.242]

    I тип — суспензоиды (или необратимые коллоиды, лиофобные коллоиды). Так называют коллоидные растворы металлов, нх оксидов, гидроксидов, сульфидов и других солей. Первичные частицы дисперсной фазы коллоидных растворов этнх веществ по своей внутренней структуре не отличаются от структуры соответствующего компактного вещества и имеют молекулярную или ионную кристаллическую решетку. Суспензоиды — типичные гетерогенные высокодисперсные системы, свойства которых определяются очень сильно развитой межфазовой поверхностью. От суспензий они отличаются более высокой дисперсностью. Суспензоидами их назвали потому, что, как и суспензии, они не могут длительно существовать в отсутствие стабилизатора дисперсности. Необратимыми их называют потому, что осадки, остающиеся при выпаривании таких коллоидных растворов, не образуют вновь золя при контакте с дисперсионной средой. Лиофобнымн (греч. лиос — жидкость, фобио — ненавижу) их назвали, предполагая, что особые свойства коллоидных растворов этого типа обусловлены очень слабым взаимодействием дисперсной фазы и дисперсионной среды. Концентрация лиофобных золей невелика, обычно меньше 0,1%. Вязкость таких золей незначительно отличается от вязкости дисперсионной среды. [c.312]


Смотреть страницы где упоминается термин Кристаллическая структура коллоид ных частиц: [c.202]    [c.82]    [c.286]    [c.306]    [c.334]    [c.98]    [c.312]    [c.188]    [c.312]    [c.343]   
Учебник физической химии (1952) -- [ c.383 ]




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Коллоиды структура частиц

Кристаллическая структура



© 2025 chem21.info Реклама на сайте