Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Силы взаимодействия дисперсионной среды

    Рассмотрим кинетику изменения толщины сольватного слоя сложной структурной единицы в зависимости от РС дисперсионной среды (нерастворитель, плохой растворитель, хороший растворитель). В этом случае в обратимой НДС осуществляются два противоположных процесса. С одной стороны, по мере добавки растворителя растворяющая сила дисперсионной среды изменяется, в результате чего повышается степень дисперсности ассоциатов это приводит к увеличению поверхностной энергии и толщины сольватного слоя сложной структурной единицы. С другой — при взаимодействии дисперсионной среды с поверхностью сольватного слоя толщина последнего уменьшается. [c.60]


    Как указано выше, согласно термодинамической теории электростатический фактор устойчивости обеспечивает уменьшение поверхностного натяжения вследствие образования двойного электрического слоя на поверхности частиц. При действии адсорбционно-сольватного фактора устойчивости в отсутствие двойного электрического слоя поверхностное натяжение уменьшается в результате сольватации поверхности частиц. В соответствии с уравнением Дюпре для работы адгезии взаимодействие дисперсионной среды с поверхностью частиц приводит к уменьшению межфазного натяжения. Поверхность частиц в системах с адсорбционно-сольватным фактором устойчивости лиофильна по своей природе или лиофилизирована вследствие адсорбции стабилизаторов — неэлектролитов, имеющих сродство к растворителю. В результате взаимодействия частиц со средой на их поверхности фор.мируются сольватные слои. По теории ДЛФО, учитывающей структурную составляющую расклинивающего давления, при сближении частиц сольватные слои перекрываются (по аналогии с перекрыванием двойных электрических слоев при действии электростатического фактора), возрастает осмотическое давление, а следовательно, и давление отталкивания, что снижает стремление системы к коагуляции. Механизм действия сил отталкивания можно представить и как совершение работы для разрушения сольватных слоев и для частичной десорбции молекул из них при сближении частиц. [c.389]

    Увеличение заряда дисперсной фазы, по-видимому, способствует упорядочению сольватной оболочки главным образом за счет привлечения большого количества ионов обратного знака, связанных с полярными молекулами, а также вследствие возрастания электростатических сил их взаимодействия с частицей. Увеличение заряда дисперсной фазы способствует повышению устойчивости коллоидной системы, имевшей в данном случае в качестве дисперсионной среды вазелиновое масло. [c.28]

    Адсорбция на поверхности дисперсных веществ из растворов осуществляется в более сложных условиях, чем адсорбция из газов. В этом случае на ход и результат адсорбции влияют условия, которые будут созданы для компонентов пары (дисперсное вещество — среда) на поверхности дисперсного вещества (силовое поле дисперсного вещества) и в объеме (силы межмолекулярного взаимодействия). С поверхностью дисперсного вещества в первую очередь будут реагировать те вещества из раствора, растворяющая сила (РС) которых выше. Равновесие между составом сложной структурной единицы и составом растворов в объеме определяется свойствамп дисперсной фазы и дисперсионной среды. [c.58]


    Рассмотренные выше среднестатистические модели молекул концентратов ароматических углеводородов и нефтяных остатков (см. с. 18) приняты в качестве исходных при обсуждении физико-химической сущности процессов, протекающих при нагреве различных видов углеводородного сырья. В общем случае в результате слабых и сильных взаимодействий ВМС и НМС и изменения растворяющей силы дисперсионной среды происходит сложный процесс, который может быть расчленен на стадии  [c.157]

    Положительная составляющая расклинивающего давления (отталкивание) обусловлена увеличением потенциальной энергии молекул, ионов в тонких пленках. Прн достаточно большой толщине пленки, (прослойки /г, рис. VI. 2а), избыточная энергия молекул, ионов в ней полностью скомпенсирована благодаря взаимодействию с соседними молекулами и ионами н поэтому равна их энергии в объеме дисперсионной среды, т. е. существует равновесие между прослойкой среды и всем ее объемом. Если л<е толщина пленки равна илп меньше двух радиусов действия межмолекулярных и межионных сил (/г 2г), то утончение пленки приводит к исчезновению в ней молекул и ионов с минимальной энергией (рис. VI. 26). Все молекулы и ионы в пленке будут взаимодействовать с меньшим числом молекул и ионов, чем в объеме дисперсионной среды, и поэтому их потенциальная энергия будет больше, [c.274]

    Поверхность агрегата может заряжаться благодаря избирательной адсорбции ионов из дисперсионной среды или диссоциации молекул в поверхностном слое агрегата. В соответствии с правилом Пескова — Фаянса адсорбируются преимущественно ионы, входящие в состав агрегата, либо специфически взаимодействующие с ним. Ионы, сообщающие агрегату поверхностный заряд, называются потенциалопределяющими. Заряженный агрегат составляет ядро мицеллы. При данном методе получения золя гидроксида железа ядро [Ре(ОН)з] -тРе + имеет положительный поверхностный заряд за счет адсорбции иоиов Ре + из среды (т — число адсорбированных ионов). Заряд ядра компенсируется эквивалентным зарядом противоположно заряженных ионов— противоионов, расположенных в объеме среды. Противоионы, находящиеся непосредственно у поверхности ядра (на расстояниях, близких к диаметрам ионов), помимо электростатических сил испытывают силы адсорбционного притяжения поверхности. Поэтому они особо прочно связаны с ядром мицеллы и носят название противоионов адсорбционного слоя (их число т — х). Остальные противоионы составляют диффузно построенную ионную оболочку и называются противоионами диффузного слоя (их число соответствует. г). [c.163]

    При структурировании дисперсные частицы либо непосредственно контактируют друг с другом, вытесняя полностью дисперсионную среду из места контакта и образуя наиболее прочную структуру, в то же время отличающуюся хрупкостью, либо разделены тонкой жидкостной прослойкой, придающей структуре пластичность или эластичность. При увеличении толщины этой прослойки и, как следствие, увеличении расстояния между частицами дисперсной фазы и ослаблении молекулярных сил их взаимодействия прочность структуры снижается, а по достижении некоторого значения она может быть разрушена уже слабыми физическими, например механическими, воздействиями, в частности встряхиванием или перемешиванием. Для многих коагуляционных структур подобное разрушение может быть обратимо, то есть по истечении времени разрушенные структуры восстанавливаются, постепенно приобретая первоначальную прочность. Эта способность разрушенных физическими воздействиями структур самопроизвольно восстанавливаться во времени называется тиксотропией. [c.30]

    Граничный слой характеризуется некоторой эффективной толщиной, за пределами которой отклонение локальных свойств от их объемных значений становится несущественным. Изменение локальных свойств граничного слоя, а точнее выравнивание их со свойствами дисперсионной среды происходит благодаря наличию некоторого радиуса поверхностных сил дисперсной фазы и монотонного убывания в этом направлении сил межмолекулярного взаимодействия между компонентами дисперсной фазы и дисперсионной среды. [c.42]

    Следует особо отметить зависимость изменения толщины сольватного слоя и устойчивости нефтяной дисперсной системы от растворяющей способности дисперсионной среды. Повышение растворяющей способности среды вызывает непрерывное увеличение сольватного слоя сложной структурной единицы до максимума и одновременное уменьшение размеров надмолекулярной структуры. При этом нефтяная дисперсная система имеет максимальную устойчивость против расслоения, то есть максимальную коллоидную стабильность. При дальнейшем увеличении растворяющей способности среды, при переходе от плохого растворителя к хорошему, дисперсионная среда оказывает интенсивное влияние на сольватный слой и толщина его уменьшается, за счет чего повышается движущаяся сила процесса расслоения системы на фазы. Дисперсионная среда начинает взаимодействовать непосредственно с надмолекулярной структурой. После полного растворения сольватной оболочки и надмолекулярных структур нефтяная дисперсная система переходит в состояние молекулярного раствора с бесконечной устойчивостью против расслоения. В этом случае система термодинамически устойчива. [c.48]


    Выражение для силы и энергии молекулярного взаимодействия плоских частиц в жидкой дисперсионной среде имеет простой вид для расстояний, существенно больших по сравнению с основной длиной волны в спектре поглощения веществ, составляющих дисперсную систему. [c.143]

    Дисперсные системы имеют две фазы мелко раздробленную дисперсную фазу и дисперсионную среду. Состав системы определяет величину сил, действующих между частицами, так как он влияет на потенциал и толщину двойного слоя. Силы взаимодействия между частицами, а также их концентрация, определяют структуру дисперсной системы и, следовательно, ее реологические свойства. [c.80]

    Выше была рассмотрена группа коллоидных систем, объединенных под общим названием лиофобных (гидрофобных) коллоидов, которые обладают сильно развитой физической поверхностью раздела и большим избытком свободной поверхностной энергии. Благодаря этому образуются ионные и молекулярные адсорбционные слои, которые и сообщают агрегативную устойчивость коллоидным частицам, тогда как стремление свободной поверхностной энергии лиофобных (гидрофобных) коллоидов к самопроизвольному уменьшению в силу второго начала термодинамики делает их термодинамически неустойчивыми. Весьма характерным свойством этих коллоидных систем является, как известно, слабое взаимодействие между веществами дисперсной фазы и молекулами дисперсионной среды. [c.326]

    Силы взаимодействия между коллоидными частицами, проявляющиеся при утоньшении разделяющих их прослоек жидкости, могут как ускорять коагуляцию, так и сильно ее тормозить. Чтобы выяснить роль таких прослоек и механизм их стабилизующего действия, рассмотрим их поведение на примере простой схемы,, когда прослойка жидкости разделяет параллельные поверхности двух пластинок. В этом случае разделяющая прослойка всюду имеет одинаковую толщину и по краям граничит с дисперсионной средой, в которую погружены обе пластинки. [c.269]

    Образование достаточно развитых сольватных оболочек маловероятно для коллоидных систем с лиофобной дисперсной фазой вследствие слабого энергетического взаимодействия среды с дисперсной фазой. Сольватация может иметь место только в том случае, когда поверхностные молекулы дисперсной фазы достаточно сильно взаимодействуют с молекулами дисперсионной среды за счет химических сил или, по крайней мере, прочных водородных мостиков. [c.281]

    Влияние взаимодействия между частицами. Причина неприменимости в некоторых случаях уравнения Эйнштейна к дисперсным системам может заключаться в проявлении сил притяжения между коллоидными частицами. При этом в системе образуются более или менее рыхлые структуры, которые включают значительные объемы дисперсионной среды. Подобная иммобилизация, т. е. уменьшение подвижности растворителя, приводит к тому, что вязкость системы оказывается гораздо больше той, которая может быть вычислена по уравнению Эйнштейна. Вязкость в таких системах сильно зависит от скорости течения, так как представляет собой структурную вязкость, обусловленную наличием в системе рыхлых пространственных сеток. [c.338]

    Наличие дисперсной фазы (часто в относительно малом количестве) может существенно изменить структурно-механиче-ские свойства системы по сравнению с чистой дисперсионной средой. Возможность изменения механических свойств жидкой дисперсионной среды зависит от химической природы веществ, образующих дисперсную систему, и определяется молекулярными силами сцепления между частицами дисперсной фазы и взаимодействием их с дисперсионной средой. [c.251]

    Реологические свойства дисперсных систем в значительной степени зависят от агрегатного состояния и свойств дисперсионной среды. Однако наличие дисперсной фазы может существенно изменять эти свойства под влиянием сил сцепления между частицами дисперсной фазы и их взаимодействия с дисперсионной средой. По интенсивности указанных взаимодействий среди [c.428]

    Когда между частичками дисперсной фазы и дисперсионной средой нет значительного взаимодействия (система лиофобна), сближение частичек происходит подобно сближению в вакууме. Расклинивающее давление равно нулю до расстояний Ю"" см, затем оно становится отрицательной величиной, т. е. фактором коагуляции. Чем выше лио-фильность системы, тем выше положительное расклинивающее давление или толщина сольватных оболочек, уравновешивающих своим расклинивающим давлением постоянную внешнюю силу, стремящуюся сблизить частички, и тем выше устойчивость системы. Поэтому стабилизация лиофобных дисперсных систем основана на лиофилизации поверхности частичек дисперсной фазы. Такая лиофилизация осуществляется либо созданием адсорбционного слоя ориентированных молекул поверхностно-активного вещества, изменяющего природу поверхности дисперсных частичек, либо адсорбцией ионов и созданием двойного электрического слоя на поверхности раздела фаз. Двойной электрический слой ионов при достаточно малой концентрации электролита в дисперсионной среде всегда размыт и образует вокруг коллоидной частички гидратную оболочку значительной толщины. Эта оболочка проявляет положительное расклинивающее давление, обусловленное электростатическими силами. [c.89]

    В лиофобных системах слипание частиц, вызванное добавлением электролита или повышением концентрации золя, легче всего происходит на выступающих участках поверхности частиц — на углах и ребрах. Такой процесс начинается в отдельных участках, а затем распространяется на весь объем данной системы. В этом случае все твердые частицы дисперсной фазы связываются в один сплошной каркас, обладающий известной прочностью. Промежутки между частицами в ячейках каркаса заполняются дисперсионной средой, часть молекул которой связана с поверхностью частиц силами межмолекулярного взаимодействия, основная же масса жидкости удерживается в ячейках механически. Образовавшаяся система, приближающаяся по своим свойствам к твердому телу, называется гелем. [c.366]

    Совокупность экспериментальных данных ряда работ [43, 44, 186—192], выполненных до и после нашего исследования [184], убеждает в справедливости общих представлений о роли поверхностного натяжения в проявлении капиллярных сил при высыхании дисперсных систем. Однако при этом нельзя не считаться с влиянием на процесс формирования пористой структуры силикагеля особенностей химического строения органических растворителей и с коллоидно-химическими свойствами мицелл кремнекислоты. В частности, можно было ожидать известного влияния природы интермицеллярной жидкости на степень агрегирования частиц геля, что неизбежно должно сказаться на пористой структуре. Нельзя, очевидно, пренебрегать возможными различиями в интенсивности взаимодействия дисперсионной среды с дисперсной фазой [193, 150, 185]. Действительно, Высоцкий и др. [166] обнаружилисвязь между изменением пористости силикагелей, полученных из ряда алкогелей, и теплотами с.мачивания геля соответствую-ш,ими спиртами. Результаты данного исследования приведены в табл. 21. [c.75]

    Одаиы из замечательных свойств ССЕ является экстремальное изменение их размеров под действием внешних сил (рис. I). Эго под-тверадается теоретически и экспериментально. В [13] дается теоретическое обоснование влияния энергии межмолекулярного взаимодействия дисперсионной среды на радиус ядра ССЕ (рис. 1,а). В работе [19] получена теоретическая зависимость изменения разьлеров адер ССЕ от соотношения удельных энергий дисперсионной среды ( Зс ) и дисперсной фазы ( ), а такке степени наполнения ( У системы ССЕ (см.рис. 1,6). В [ы] проведено теоретическое исследование зависимосги величины обратимых ССЕ от соотношения удельных объемных энергий дисперсионной среда ( , ) и дисперсной фазы ( ), понятие о которых введено в работе [20] (см.рис. 1,в). [c.8]

    Некоторые исследователи предприняли попытку количественной опенки растворяющей силы (РС) дисперсионной среда. Для этой цели в работе [52] предложено использовать козф ициент растворяющей способности Кр характеризующий взаимодействие среда с асфаль-теновнми ассошатагли [c.14]

    Без сомнения, для сложных нефтяных дисперсных систем, содержащих ССЕ различного типа, требуется разработка специальных методов количественной опенки растворяющей силы среды. Косвенно ее оиенивают по концентрации добавки, воздействующей на соотношение энергии взаимодействия дисперсионной среди и дисперсной фазы. Применительно к конкретным видам сырья и технолагичвоким ироцвс-сам требуется подбирать добавки определенного состава и свойств. [c.15]

    В целом сложные структурные единицы нефтяных остатков находятся в динамическом равновесии со средой и изменение размеров ядер и толщины сольватной оболочки их могу г протекать по различным законам [14]. Главными факторами, определяющими возможность существования их в остатках и, соответственно, геометрические размеры, является наличие в них структурирующихся компонентов и ассоциатов, а также степень теплового воздействия. Нефтяные остатки относятся к свободнодисперсным системам, частицы которых могут независимо друг от друга перемещаться в дисперсной среде под влиянием теплового движения или гравитационньк сил. С изменением температуры в таких дисперсных системах изменяется энергия межмолекулярного взаимодействия дисперсной фазы и дисперсионной среды. Толстая прослойка дисперсионной среды между частицами снижает структурно-механическую прочность нефтяных дисперсных систем. Утоньшение сольватного слоя на поверхности ассоциатор повышает движущую силу расслоения системы на фа ы. Размеры основных зон структурной единицы при определенных температурах различны за счет того, что часть наиболее полярных компонентов сольватного слоя может переходить в дисперсную фазу (ядро), а часть в дисперсионную среду, находящуюся в молекулярном состоянии. Таким образом, по мере повышения температурь размеры радиуса ядра и толщины сольватного слоя могут проходить через экстремальные значения [14]. Ядро, состоящее из ассоциатов, при достижении максимальных размеров может распадаться на осколки, что ведет к образованию новых частиц дисперсной фазы, вокруг которых формируется сольватный слой и по мере изменения температуры для этих частиц характерны аналогичные стадии изменения размеров ядра и толщины сольватной оболочки. При высоких температурах и большой длительности нагрева внутри ядра может зародиться новая дисперсная фаза — кристаллит, представляющий собой надмолекулярную неябратимую структуру, обычно характерную для карбенов и карбоидов [14]. [c.26]

    Нефтяные остатки относятся к структурированным нефтепродуктам и обладают определенной механической прочностью и устойчивостью против расслоения. Увеличение молекулярной массы, связанное с усложнением струтстуры молекул, ведет к увеличению степени объемного наполнения системы и соответственному возрастанию структурномеханической прочности и снижению показателя устойчивости. На эти показатели влияют и физико-химические свойства дисперсионной среды, компонентный состав и, в частности, межмолекулярные взаимодействия. При малых значениях сил взаимодействия (алканы, алкано-циклоалканы с низкой молекулярной массой) показатели прочности и устойчивости изменяются по экстремальным зависимостям. При увеличении сил взаимодействия в дисперсионной среде (арены с высокой молекулярной массой) также происходят экстремальные изменения указанных показателей [14]. [c.30]

    В мадоконцентрированных системах, где расстояние между частицами значительно превышает значимое для силовых поляризационных эффектов, возможно использование совокупности линейных и квадратических эффектов по полю. Это означает, что принципиально возможно разделение системы с наличием одной—двух частиц в безграничном объеме, что чрезвычайно важно для соответствующих технологических процессов. Как в неполярных, так и полярных дисперсионных средах поляризационные силы взаимодействия между частицами описьшаются сходными формулами в том смысле, что они содержат величину /г , что является прямым подтверждением дипольного характера сил. Это же означает, что электрические параметры режима злектрообработки, а не электрохимические, наиболее важны для реализации процессов. Используя значения напряженности поля, обеспечивающие минимум потенциальной энергии на кривой взаимодействия частиц, возможно [c.16]

    Аналогично изменению толщины сольватного слоя иод действием РС среды может изменяться и толщина слоя надмолекулярной структуры НДС (ассоциата). Эта толщина формируется под влиянием разницы сил межмолекулярного взаимодействия ВМС и растворяющей силы сольватного слоя. На образование сольватного слоя в свою очередь, как было ранее показано, оказ[>1вает влияние растворяющая сила дисперсионной среды. В общем случае эти изменения могут быть представлены в следующем виде  [c.62]

    Возникшие ассоциаты продолжают расти до размеров, определяемых физико-химическими свойствами дисперсионной среды и дисперсной фазы, и затем коагулируют. Важное значение имеет геометрия молекул, составляющих дисперсную фазу (ассоциаты). Наиболее упорядоченная укладка в ассоциате будет в том случае, если молекулы полициклических ароматических углеводородов упорядочены в двумерной плоскости. В случае пространственной конфигурации мошекул ароматических углеводородов будут формироваться рыхлые бессистемные коагуляты. Образующиеся за счет сил межмолекулярного взаимодействия ассоциаты на более поздних стадиях подвергаются химическим превращениям. Появление ири этом сшивок между молекулами в кристаллите в дальнейшем сильно затрудняет их растворение, а на более глубоких стадиях делает его невозможным. [c.170]

    Останавливая процесс на любой стадии, мы можем получить продукты различной стадии ассоциации и агрегативной устойчивости. На ранних стадиях термодеструкцин образуются в основном продукты внутримолекулярного взаимодействия (ассоциаты), которые имеют сиособность при низких температурах к физическому агрегированию, тем в большей степени, чем меньше растворяющая сила дисперсионной среды. Эти ассоциаты растворимы во многих растворителях. Повышая долю процессов уплотнения, можно интенсифицировать рост единичных размеров молекул и создать более эффективные условия для межмолекулярного взаимодействия и начала химического агрегирования, завершающегося получением продукта, сильно склонного к явлениям ассоциации, особенн( ири низких температурах. Таким продуктом являются пеки с различными температурами размягчения и с ограниченной растворимостью. При глубоких стадиях, когда в условиях высоких температур происходит преимущественно межмолекулярное взаимодействие с об- [c.170]

    Из этой схемы видно, что, изменяя значения (например, увеличивая) и /гг (уменьшая), представляется возможным регулировать (например, увеличивать) высоту межфазного слоя В. Регулирование значений 1 и / 2 может быть достигнуто в результате изменения баланса сил межмолекулярного взаимодействия в элементе структуры дисиерсной фазы и дисперсионной среде. Обозначим силы, действующие в слое А и приводящие к формированию элемента структуры дисперсной фазы, через Р—Ж (разность сил отталкивания притяжения), а в слое С — через Сммн. Существование межфазного слоя В обеспечивается разностью сил Сммн—Р+Ж- [c.69]

    Рассмотрим кратко влияние этих факторов иа адсорбцию на границе ядро — дисперсионная среда. Если дисперсная фаза (например, асфальтены) и диснерсионная среда (парафины) ре.зко различаются по полярности, взаимодействие между ними незначительно. В этом случае элементы структуры дисперсной фазы находятся в состоянии, аналогичном модели ССЕ по Ленгмюру (гтах, Лт ,,) система склонна к расслоению. Поверхности с высокой поверхностной энергией легко адсорбируют алканы с образованием монослоя с низкой поверхностной энергией. Введение в систему аренов или других аналогичных добавок изменяет обстановку. Изменения наступают в результате влияния растворения на баланс сил в системе и в конечном счете на размеры гик ССЕ. Поскольку парные взаимодействия между молекулами алканов и аренов слабее, чем между молекулами аренов, то с поверхности ядер ССЕ удаляются алканы. В итоге формирую я активные ССЕ (с повышенной поверхностной энергией). Активные ССЕ обладают нескомиенсированной поверхностной энергиеС , что является движущей силой для роста размеров ССЕ. Все эти стадии схематически выглядят так  [c.78]

    На ССЕ в дисперсионной среде действуют три силы силы межмолекулярного взаимодействия (Р) и отталкивания (Ж) молекул в ядре, а также сила межмолекулярного взаимодействия в дисперсионной среде (Смма). Соотношение этих сил определяет состояние СС1 . Если Р—Ж—С м в>0, то в системе происходит формирование ядра ССЕ при одновременном снижении толщины адсорбционно-сольватного слоя. При Р—Ж—Сммв<0 происходит обратная картина — уменьшение радиуса ядра г и увеличение толщины к. Постоянное значение г к к достигается при равенстве баланса сил в системе (рис. 18). Таким образом, регулированием баланса сил представляется возможным управлять размерами составных частей ССЕ (ядра и адсорбционно-сольватного слоя). При таком подходе к НДС возникает необходимость введения новых понятий растворяющая сила — РС, диспергирующая сила — ДС, агрегирующая сила — АС. Например, РС соответствует той величине внешнего воздействия, которая [c.89]

    Видно различие значений иоверх1Юст юго натяжения веществ в жидком и твердом состояниях. Наиболее высокое поверхностное натяжение тугоплавких веществ (в частности, алмаза) обусловлено значительной энергией для преодоления сил ММВ ири формированпи новой иоверхности. Поскольку твердые вещества (Ре, Си, Ад) имеют высокие значения поверхностного натяжения, они используются в качестве каталитических поверхностей, на которых происходит взаимодействие фаз. Любая реакция между фазами (в адсорбционно-сольватном слое, межфазном слое) легче реализуется в структурированном состоянии, где на ])еакционную способность соединений, попадающих в слой, дополнительное влияние оказывают силы поверхностного натяжения. В этом случае процесс деструкции идет легче в слое, нри меиьших значениях энергии активации, чем в объеме дисперсионной среды. [c.147]

    Второй вариант отличается от первого тем, что при обмене между адсорбционно-сольватными слоями ССЕ и дисперсионной средой топлива происходят самопроизвольные химические изменения (автоокисление). Химические превращения в процессе горения топлив представляют собой цепные реакции с участием свободных радикалов. Причем основными реакциями являются реакции продолжения цепи, в результате которых прн взаимодействии радикала с молекулами дисперсионной срсды или промежуточного продукта образуется новый активный центр. Свободные радикалы наиболее легко возникают в адсорбционно-сольватном слое ССЕ под воздействием адсорбционного поля, чему способствуют и другие внешние воздействия (термические и фотохимические и др.). Свободные радикалы могут вступать также в обменные реакции, реакции распада и присоединения. Глубина этих реакций зависит от температуры, степени дисперсности пузырьков кислорода, состава и структуры углеводородов, времени и других факторов. Углеводороды, в первую очередь попадающие в адсорбционно-сольватньп слой, имеют наиболее высокие значения сил ММВ и наиболее склонны к образованию радикалов. [c.214]

    Экстремальные изменения радиуса надмолекулярной структуры II толщины сольватного слоя непосредственно влияют на характер зависимости структурно-механической прочности и агрегативной устойчивости нефтяной системы. Кривые изменения этих свойств типичны для многих нефтепродуктов. В точке Ж устойчивость нефтяных дисперсных систем к расслоению на фазы максимальна толщина сольватной оболочки в точке А имеет максимальное значение Я кс, благодаря чему уменьшается движущая сила процесса расслоения. Толстая прослойка дисперсионной среды между надмолекулярными структурами снижает структурно-механическую прочность нефтяных дисперсных систем, первый минимум которой достигается в точке К. Утоньшение сольватного слоя на поверхности надмолекулярных структур повышает движущую силу расслоения системы на фазы. После удаления основной части сольватного слоя (точка 3) дисперсионная среда начинает взаимодействовать непосредственно со слоем надмолекулярной структуры, обуславливая его полное разрушение в точке Б. В этой точке сложные структурные единицы переходят в состояние молекулярного растбора с бесконечной устойчивостью к расслоению на фазы. Предлагаемое объяснение экстремальных изменений структурномеханических свойств и агрегативной устойчивости нефтяных систем справедливо, если считать, что межфазная энергия на границе структурная единица — дисперсионная среда меняется незначительно. [c.41]

    Пластичные смазки занимают промежуточное положение между жвдкими и твердыми смазочными материалами. Они представлякл собой структурированные коллоидные системы. Их свойства зависят прежде всего от особенностей трехмерного структурного каркаса, образующегося из дисперсной фазы, который в своих ячейках удерживает большое количество (80-90 %) дисперсионной среды. Устойчивость структурированной системы зависит от прочности структурного каркаса, сил взаимодействия между его отдельными частицами, между элементами структурного каркаса и дисперсионной средой на транице раздела фаз, числа контактов частиц каркаса в единице объема, электростатических свойств, критической концентрации ассоциации различных мыл и других коллоидно-химических факторов. [c.354]

    Дисперс1гую систему в этом случае можно представить в виде слабосшитого геля. В этом состоянии система легко поддается переводу в первоначальное свободно-дисперсное состояние, например, введением в нее определенных реагентов, взаимодействующих с дисперсионной средой. Этот процесс получения свободно-дисперсной системы из связанно-дисперсной называют пептизацией. Пептизация, то есть разрушение коагуляционного каркаса, происходит на уровне физических межмолекулярных, а не хими кч -ких сил взаимодействия между элементами дисперсной фазы и дисперсионной среды [c.23]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Прочность коагуляционных контактов определяется ван-дер-ваальсовыми молекулярными силами сцепления через тончайшие прослойки дисперсионной среды, фиксированная толщина которых соответствует минимальному значению поверхностной энергии Гиббса [185]. Поэтому коагуляционные структуры отличаются сравнительно слабыми контактами между частицами (в среднем 10-">Н на контакт) и тиксотропной обратимостью вследствие наличия частиц, способных совершать броуновское движение. Истинная прочность контакта зависит от условий его образования, природы компонентов системы и расстояния между взаимодействующими частицами [185]. Сила сцепления в контактах должна быть достаточ- [c.102]

    Коагуляционные контакты. В коагуляционном контакте сцепление частиц ограничивается простым их соприкосновением — непосредственным или через остаточную пленку дисперсионной среды — с учетом преимущественно дальнодействующих (вандерваальсовых) сил такой контакт в принципе механически обратим. Оценим силу и энергию сцепления в таком контакте между двумя одинаковыми сферическими частицами в зависимости от геометрии системы (радиус г, зазор /г г) и физико-химических условий на границе фаз. Как было показано ранее, дисперсионная компонента свободной энергии взаимодействия (энергия притяжения на 1 см плоскопараллельных частиц 1) в среде 2 составляет по модулю [c.303]

    Следует иметь в виду, что представления о структуре материала основаны на закономерностях взаимодействия компонентов данного материала. В коллоидной химии изучаются составы, имеющие два основных компонента, точнее, две фазы дисперсную фазу (чаще всего в виде мелких твердых частиц) и дисперсионную среду (обычно жидкость, содержащую различные растворенные вещества). Состав системы определяет величину сил, действующих между частицами (так как от него зависят потенциал и толщина двойного слоя, а также толщина и состояние адсорбционного слоя поверхностно-активного вещества или полимера). Межчастичные силы и концентрация частиц, а часто и предыстория определяют, в свою очередь, структуру дисперсной системы и, следовательно, ее реологические свойства, поэтому, приступая к изучению реологических свойств, необходимо хотя бы в общих чертах познако- [c.151]

    Классификация по межфазному взаимодействию. На границе раздела фаз всегда проявляется взаимодействие между веществами дисперсной фазы и дисперсионной среды за счет межфазной свободной энергии (нескомпенсированных сил Ван-дер-Ваальса), но степень его проявления у различных веществ различна. В зависимости от этого дисперсные системы могут быть лиофильными (1уо — растворяю рЬ11ео — люблю) или лиофобными (рЬоЬоз — страх). Для первых характерно сильное межмолекулярное взаимодействие вещества дисперсной фазы со средой, а для второй — слабое. Это взаимодействие приводит к образованию сольватных (гидратных, если средой является вода) оболочек вокруг частиц дисперсной фазы. [c.72]

    Складывая компоненту расклинивающего давления Пм, зависящую от молекулярных сил (имеющую отрицательный знак), со слагающей, зависящей от перекрытия ионных слоев Пэ (имеющей лоложительный знак), получают общее расклинивающее давление между пластинками с лиофобными поверхностями, у которых отсутствует сильное взаимодействие с дисперсионной средой. Если пластинки имеют лиофильную поверхность, то вследствие сильного взаимодействия с жидкостью может возникнуть третья, структурная слагающая расклинивающего давления слоев жидкости, структура которых изменена под влиянием лиофильной поверхности. Эта слагающая расклинивающего давления еще недостаточно количественно изучена, и мы ее здесь не рассматриваем, [c.275]


Смотреть страницы где упоминается термин Силы взаимодействия дисперсионной среды: [c.71]    [c.29]    [c.62]    [c.49]    [c.432]   
Коагуляция и устойчивость дисперсных систем (1973) -- [ c.34 ]




ПОИСК





Смотрите так же термины и статьи:

Взаимодействие дисперсионное

Дисперсионные

Дисперсионные среда



© 2025 chem21.info Реклама на сайте