Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диспергирование химическое

    Твердые нефтяные отходы (шламы и нефтяную грязь) можно использовать для приготовления диспергированных активированных эмульсионных топливных смесей после обработки в универсальных дезинтеграторах-активаторах, в которых одновременно осуществляются диспергирование, смешение и активация компонентов смеси с изменением их отдельных физико-химических свойств. Некоторые шламы мох<но использовать в качестве котельного топлива непосредственно или в смеси с топочным мазутом. [c.119]


    Производство неорганических и органических смазок сводится к диспергированию загустителя, полученного отдельно химическим путем, в масле. Диспергирование загустителя в масле осуществляется на высокопроизводительных коллоидных мельницах непрерывного действия, краскотерках и др. Смешение загустителя с масЛом может производиться как при нормальной, так и при повышенной температурах. [c.192]

    Нефтепродукты и химические органические продукты (далее— вещества) по пожаровзрывоопасности подразделяются на газы — вещества, абсолютное давление паров которых при 50 °С равно или выше 300 кПа или критическая температура ниже 50 °С жидкости — вещества с температурой плавления (капле-падении) не более 50Х твердые вещества —с температурой плавления (каплепадения), превышающей 50°С пыли — диспергированные твердые вещества с размером частиц менее 850 мкм. Указанным ГОСТом установлены следующие показатели пожаровзрывоопасности. [c.9]

    В ходе диспергирования химический состав материала не изменяется. [c.312]

    Ермилов П. И. Диспергирование пигментов (физико-химические основы).— М. Химия, 1971. [c.190]

    Таким образом, скорость процесса разделения водонефтяных эмульсий в отстойнике определяется осаждением взвешенных капель и их коалесценцией. На скорости этих процессов влияют температура подогрева разделяемой эмульсии и добавляемые в нефть реагенты — деэмульгаторы. К управляющим параметрам можно отнести и химические вещества, называемые флокулянтами [36, 37]. Они так же, как и деэмульгаторы, способствуют коагуляции (или флокуляции) диспергированных капель, т. е. объединению их в группы, что в свою очередь приводит к ускорению процесса коалесценции. На скорость процесса коалесценции можно влиять и другими способами применением электрических полей [4—6], коалесцирующих фильтров [38], ультразвука [39, 40], магнитных полей [41] и др. Однако из всех этих способов при подготовке нефти применяют в основном только электрические поля и реже — коалесцирующие фильтры. [c.26]

    Химические агенты вспенивания. Вспенивающее действие в термореактивных материалах часто является результатом образования летучих побочных продуктов в реакциях роста цепи и поперечного сшивания (полиуретаны, фенопласты, аминопласты). Химическими вспенивающими агентами в термопластах служат совместимые или просто хорошо диспергированные химические соединения, разлагающиеся с нужной скоростью в узком интервале температур. Этот интервал должен быть выше температуры смешения, но входить в температурный интервал переработки полимера. [c.168]


    Измерения в таком же сосуде, но с диспергированием газа в жидкости также показали, что при высокой интенсивности перемешивания скорость абсорбции пропорциональна давлению кислорода. Скорость абсорбции оставалась неизменной при использовании кобальта вместо меди (с той же концентрацией). Это свидетельствовало о независимости скорости абсорбции от скорости химической реакции и о влиянии на нее лишь скорости переноса от поверхности в массу жидкости. По данным Филлипса и Джонсона, значения киа при 600 и 4500 оборотах ъ I мин составляли около 0,044 и 0,88 eк соответственно. [c.256]

    В результате эксперимента (рис. 3.6), показана качественная идентичность поведения кинетических кривых в эксперименте и в расчете. Как видно, при заданных физико-химических свойствах внутренней и внешней фаз дисперсии и подводимой на диспергирование энергии уравнение модели допускает большое разнообразие решений неизменность, плавное увеличение, увеличение с насыщением, периодическая изменчивость состава с небольшим и большим размахами. [c.129]

    Процесс гигротермической обработки диспергированных химических реактивов и особо чистых веществ имеет большое значение в технологии производства химических продуктов, поскольку именно на этом этапе в значительной степени решается вопрос сохранения качества продукта (дисперсного состава, формы, содержания примесей, биологической ценности продуктов и др.). [c.156]

    Размер основной массы частиц красителей в порошках и пастах составляет 0,5—2 мкм. Тонкодисперсное состояние достигается путем диспергирования химическим или механическим способом. [c.54]

    Чтобы лучше понять закономерности кинетики гетерогенно-ката-литических процессов, целесообразно рассмотреть специфические особенности катализа на поверхности раздела фаз. В гомогенном катализе катализатор выступает в молекулярной форме, в гетерогенном катализе катализатор выступает в форме совокупности большого числа молекул или атомов, образующих отдельную фазу. Так, например, в коллоидной частице платины сосредоточено 10 10 атомов, из них менее 1 % расположено на поверхности частицы. В скелетном никеле число атомов в частице радиусом 50 мкм равно 10 , из них только несколько процентов находится на поверхности раздела фаз. Следовательно, в гетерогенном катализаторе только незначительная часть атомов или молекул катализатора может непосредственно взаимодействовать с молекулами реагирующих веществ. С увеличением 5уд возрастает доля молекул или атомов, находящихся на поверхности раздела фаз, возрастает и каталитическая активность. Однако диспергирование катализатора до молекулярной степени дисперсности необязательно приведет к максимальной активности катализатора. Активность при этом может проходить через максимум и снижаться до нуля. Активные центры на поверхности катализатора могут включать несколько атомов или атомных групп. Их каталитическая активность может зависеть от атомов и молекул, находящихся во втором, третьем или п-м слоях атомов и молекул. Тогда переход к молекулярной степени дисперсности приведет к разрушению активного центра и к потере активности катализатора. В гомогенно-каталитических реакциях в растворах молекулы катализатора равномерно распределены по всему объему жидкой фазы. В гетерогенном каталитическом процессе молекулы или атомы, принимающие участие в элементарном каталитическом акте, сосредоточены в очень малом объеме, ограниченном поверхностью катализатора и толщиной слоя раствора (газа) Л, равной расстоянию, на котором начинают существенно проявляться силы притяжения между молекулами реагирующих веществ и поверхностью катализатора. Принимая /г 10 м и 5уд 100 м г"1, рассчитаем объем реакционного пространства, в котором протекает элементарный химический акт  [c.636]

    Работу гетерогенного химического реактора можно охарактеризовать следующим образом. В аппарат подаются две фазы сплошная и диспергированная, каждая из которых содержит один или несколько реагентов. Для того чтобы вступить в химическое взаимодействие, реагенты, которые подаются в аппарат с транспортной фазой, должны сначала перейти в реакционную фазу. Образующиеся в ходе реакции продукты распределяются между фазами. [c.12]

    Металлокерамические перегородки [413—419] находят все более широкое применение в химической и ряде других отраслей промышленности в качестве пористых перегородок для фильтрования жидкостей и газов и диспергирования газов в жидкостях. [c.372]

    Современный подход к решению задач химической технологии основан на принципах системного анализа и синтеза. Это означает, что химико-технологический процесс рассматривается как сложная система, состоящая из элементов различных уровней детализации, начиная от молекулярного и кончая отдельными процессами. Элементы системы, характеризующие процессы химического превращения, диффузионного, конвективного и турбулентного переноса вещества, т. е. явления на молекулярном уровне, а также явления коалесценции и диспергирования, распределения материальных и энергетических потоков и т. д., иерархически взаимосвязаны между собой в соответствии с физической реализацией процесса. Можно выделить четыре основных этапа системного исследования процесса. [c.3]


    В химической технологии физические процессы уже прошли такое развитие. Процессы физического разделения достаточно полно охватываются сложившимися разделами химической технологии в отличие от систематизации химических реакторов систематизация физических процессов близка к совершенству. Классификация процессов по чисто химическим признакам (окисление, гидрирование и т. и.) имеет некоторые преимущества для технологии органических веществ. Она, однако, неудобна для систематического изучения химических реакторов, поскольку другие факторы, такие, как тепловые эффекты и условия перемешивания и диспергирования, в равной степени определяют работу реактора. Поэтому последовательность изложения, принятая в этой книге, в основном базируется на учете физических факторов. [c.10]

    Механические свойства твердых тел обусловливаются их структурой и химическими свойствами. Под твердостью (Н) подразумевается поверхностная энергия, которая определяется как работа А поверхностного диспергирования, приходящаяся на единицу вновь образованной поверхности раздела 5 для хрупких тел  [c.164]

    Сочетание процессов химической очистки с электроосаждением продуктов реакции способствует достаточно тонкому диспергированию реагентов в неф тепродукте, а затем разделению их в электрическом поле благодаря быстрой коалесценции диспергированных частиц. [c.220]

    ИССЛЕДОВАНИЕ МАССОТЕПЛООБМЕНА ПРИ ГИГРОТЕРМИЧЕСКОЙ ОБРАБОТКЕ ДИСПЕРГИРОВАННЫХ ХИМИЧЕСКИХ РЕАКТИВОВ [c.156]

    Исследования закономерностей изменения электропроводности композиционных материалов [33, 35] показывают, что в зависимости от состава композиции, от характера наполнителя, степени его диспергирования, химической природы адгезива и технологических режимов она может изменяться в широких пределах. Для получения максимальной электропроводности необходи- [c.68]

    Следует остановиться еще на одной, весьма важной особенности каталитического гидрооблагораживання остатков - это агрегативная устойчивость сырья. Как уже отмечалось в гл. 1, при переработке сырья, характеризующегося низкой агрегативной устойчивостью, возможно вьшадение дисперсной фазы в слое катализатора, что ведет к загрязнению его и ухудшению эксплуатационных характеристик катализатора. Загрязнения в основном состоят из карбенов и карбоидов, конечных продуктов термических превращений смол и асфальтенов. Интенсивность превращения асфальтенов в карбоиды определяется не только химическими стадиями, но и степенью диспергирования асфальтенов в разбавителе - дисперсионной среде [101]. С увеличением диспергирующих свойств дисперсионной среды, что наблюдается при увеличении М и содержания аренов, затрудняется ассоциация частиц асфальтенов [c.114]

    Лично автор склонен думать, что эта теория имеет наибольший интерес в случае процессов жидкостной экстракции, сопровождающихся химической реакцией [16]. Действительно, когда приведены в контакт две жидкости, то более вязкая жидкость (или жидкость, диспергированная в виде очень мелких капель) ведет себя как твердое тело в том смысле, что относительное движение двух фаз происходит полностью или главным образом за счет высоких градиентов скорости в менее вязкой фазе, вблизи границы раздела фаз. Если реакция протекает в менее вязкой фазе, то процесс близок по условиям, допущенным в упомянутой выше теории. В качестве примера можно привести алкилирование сжиженного нефтяного газа в сернокислотных реакциях [17]. В работе Ритема и Мееринка [16] представлена довольно полная обработка экстракции жидкость — жидкость с химической реакцией. [c.116]

    Коэффициенты массообмена в экстракционных колоннах зависят от фнзнко-химических свойств жидкостей, турбулентности в обеих фазах и геометрических элементов колонны. Несмотря на трудности определения поверхности контакта фаз, количественно массообмен определяется для всех типов колонн при помощи объемных коэффициентов массопередачи или высоты единицы массопереноса. Обе аелнчины (коэффициент и высоту единицы переноса) относят к фазе рафината, или к фазе экстракта, или же к диспергированной фазе, или к сплошной. Опытные данные выражаются с помощью критериев подобия, используемых при описании диффузионных процессов критерия Шервуда 5п, критерия Рейнольдса Ре для обеих фаз и критерия Шмидта 5с. В состав этих критериев входят вязкость и плотность жидкости но они не учитывают межфазного натяжения, которое в жидких системах оказывает влияние на массообмен через межфазную турбулентность. Расчетным уравнениям придается зид показательных функций. Введение в уравнения критерия Рей- юльдса для обеих фаз одновременно следует из предполагаемого влияния турбулентности одной фазы на другую. Во многих случаях зто влияние не подтверждается, и тогда уравнение содержит только один критерий Рейнольдса или скорость одной фазы. [c.304]

    Наиболее важными для жидкофазного катализа показателями кислот являются растворимости в них изобутана и олефинов. Рс створимость изобутана в Н ЗО невелика и приблизительно в 30 рс 3 ниже, чем в НР. Олефины в этих кислотах расворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) Нс1 много меньше концентрации олефинов, что обусловливает боль — ш/ю вероятность протекания реакций полимеризации олефинов. Э о обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно Н ЗО , обусловливает протекание реакций С —алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к повер — хиости раздела фаз. Для ускорения химических реакций С —алки — ЛР- рования в среде Н 50 и НР необходимо интенсифицировать п юцессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз. [c.140]

    На послед)пощих стадиях, когда выработаны физико-химический (особенности взаимодействия внутренней и внешней фаз конкретной дисперсии) и энергетический (количество подводимой для диспергирования энергии, обеспечивающей такое взаимодействие) ресурсы применительно к конкретной системе, что в эксперименте наблюдается как момент выхода на плато кинетической кривой, в объеме дисперсии, во-первых, сохраняется количество передаваемой энергии и, во-вторых, большая часть внутренней фазы уже имеет размер осколков , поэтому интегральное увеличение степени дисперсности невозможно при одновременно созданных условиях активного агрегирования этих осколков . Далее, при накоплении достаточного количества вторичных агрегатов вновь начинается процесс диспергирования далее совокупность этих процессов повторяется — из-за чего и наблюдаются осцилляции дисперсности. Здесь важно отметить тот факт, что часть привносимой энергии расходуется не только на достижение конечной цели, но и на возбуждение и поддержание паразитных осцилляций — это практическое замечание. Не менее важен и научно-познавательный аспект мы наблюдаем ранее не отмечавшееся явление кооперативного поведения многочастичных дисперсных систем в распределенных силовых полях. Подобные факты отмечались лишь в биологических, химических, экологических системах. Необходимо отметить, что в определенных условиях такое поведение свойственно и дисперсным системам, что отражает общенаучный характер этого явления. [c.128]

    Механизм действия деэмульгаторов П. А. Ребиндер и его ученики объясняют следующим образом. Вводимый в систему химический реагент обладает большей поверхностной активностью, чем природные эмульгаторы. Поэтому деэмульгатор вытесняет эмульгаторы из поверхностного слоя диспергированных частиц воды и образует гидрофильный адсорбционный слой с низкими структурно-механическими свойствами. Частицы с такими слоями при столкновении легко коалесцируют с образованием легкооседающих крупных глобул воды. [c.39]

    Разработку системы хронопрострапственных метрик сайта технологических процессов целесообразно осуществить на базе общепринятой классификации химико-технологических процессов. В основу этой классификации положена общность кинетических закономерностей, целенаправленность и способы осуществления процессов [269, 399]. В рамках этой классификации все процессы разбиты на пять классов гидромеханические, тепловые, массообменные механо-технологические, химические. Воздействие акустических колебаний на отдельные процессы этих классов может иметь разную степень результативности. В энциклопедии [429] отмечаются следующие уровни воздействия стимулирующие (акустическое воздействие является движущей силой процесса, например, акустическое диспергирование) интенсифицирующие (воздействие выступает как фактор, ускоряющий течение процесса, например, массообмен в акустическом поле) оптимизирующие (акустические колебания упорядочивают течение процесса, например, акустическое гранулирование). В табл. 4.1. приведена систематизация ГА-процессов, согласованная с общепринятой клас- [c.148]

    Расчет реакторов с сегрегированным потоком. В реакторах для проведения процессов в гетерогеннь1х системах часто можно различить непрерывную и диспергированную (зерна твердого тела, капли жидкости, газовые пузырьки) фазы. При движении через реактор каждый элемент диспергированной фазы полностью или частично сохраняет свои особенности, и с учетом проходящего в нем химического превращения такой элемент можно рассматривать как микрореактор периодического действия. Движение диспергированной фазы является частным случаем сегрегированных потоков. Обычно сегрегированный поток определяется как движение отдельных элементов жидкости (газа) или твердого тела, полностью изолированных друг от друга с точки зрения массообмена. [c.329]

    В твердой фазе проводят тепловые процессы (например, охлаждение и нагрев сыпучих и пастообразных материалов), сушку и сублимацию, в которых теплообмен сочетается с массопереда-чей, а также обжиг, хлорирование и другие процессы, в которых наряду с химическими реакциями имеет место тепло- и массообмен. Особое положение занимают измельчение, смешение и диспергирование твердых и пастообразных материалов, в результате которых иногда существенно меняются свойства веществ. [c.168]

    Газожидкостные реакторы предназначены для осуществления химических превращений в жидкости, в объем которой из газа вносится один или несколько реагирующих компонентов. Чаще этим компонентом является труднорастворимый газ, когда сопротивление массопереносу сосредоточено в жидкостном слое вблизи границы раздела фаз. Из всего разнообразия газожидкостных реакторов здесь будут рассмотрены наиболее распространенные реакторы-котлы с механическим диспергированием газа в жидкости, барботаж-ные колонны и газлифт-ные кожухотрубчатые реакторы. Газожидкостные реакторы-котлы отличаются от аппаратов, рассмотренных в 9.1, тем, что под перемешивающим устройством установлен барботер для введения в аппарат газа и предварительного его диспергирования (рис. 9.8). В качестве перемеши- [c.265]

    Как было отмечено Кафаровым [47], механизм физических процессов в технологических аппаратах чрезвычайно сложен и позна-нпе его требует создания Йоделей. В химическом реакторе имеют место три уровня физического моделирования. Прежде всего, исследователь сталкивается с необходимостью описания элементарных физических процессов, например, диспергирования, движения капель или пузырей, механизма межфазного обмена и т. п. Далее речь идет об описании коллективного эффекта, т. е. усреднения скорости физических процессов. Наконец, необходимо описать воздействие конструктивных особенностей аппарата и параметров процесса на усредненную скорость физических процессов. Следует, однако, отметить, что принципиально возможно описать воздействие конструкции аппарата и параметров процесса на элементарные физические процессы и лишь после этого проводить усреднение их скоростей. [c.23]

    В случае, когда процесс массопередачи лимитируется сопротивлением дисперсной фазы, переход от распылительной колонны к каскаду распылительных колонн — тарельчатой колонне — связан с выбором оптимального расстояния между тарелками. На первый взгляд наиболее выгодным с точки зрения массообмена является минимальное расстояние между тарелками, так как уменьшение времени контакта (расстояние между тарелками) приводит к увеличению среднего значения коэффициента массопередачи. Однако уменьшение расстояния между тарелками выгодно лишь до определенного предела. Дело в том, что в тарельчатой колонне как процесс массопереноса, так и химическая реакция происходят не во всем объеме между тарелками. Диспергирование на каждой из тарелок осуществляется нод действием разности удельных весов фаз, что требует наличия на каждой тарелке слоя скоагулировавшейся дисперсной фазы. Объем, занимаемый скоагулировавшейся дисперсной фазой, не принимает участия в процессе массопередачи и слабо участвует в химическом взаимодействии. При этом слой диспергируемой жидкости [c.257]

    При газлифтном и компрессорном способе добычи нефти химические реагенты, подаваемые в скважину, должны способствовать повышению к. п. д. газлифтного подъемника. Структуры, обеспечивающие минимальный удельный расход рабочего газообразного агента, а следовательно, высокий к. п. д. подъемника, создаются механическим диспергированием газа в потоке добываемой нефти. Устойчивость подобных диспергированных смесей достигается добавлением пенообразующих поверхностно-активных веществ, которые формируют достаточно прочные границы раздела газ — нефть при небольших значениях поверхностного натяжения. Этот метод приемлем лишь в безводных и малообводненных (до 5%) скважинах либо, наоборот, в сильно обводненных (95 %) газлифтных скважинах. [c.29]

    При проектировании и эксплуатации системы подготовки нефти на промыслах необходимо выбирать тип деэмульгатора, место и способ ввода его в обрабатываемую среду с учетом особенностей технологического объекта и свойств эмульсии. В условиях незначительной турбулентности газоводонефтяного потока в промысловых коммуникациях и технологическом оборудовании рекомендуется химический реагент вводить не только на установках подготовки, но и непосредственно в скважинах или групповых установках. Данный ввод реагента обеспечивает равномерное распределение его и сокращение удельного расхода. Этот метод получил широкое распространение на промыслах Татарии. Получен значительный экономический эффект. При чрезмерно высоком уровне турбулентности в потоке происходит как бы дополнительное диспергирование, и ранний ввод химического реагента может привести к повышению устойчивости эмульсии. [c.40]

    К основному оборудованию хпмико-техполо) ических систем относятся химические реакторы, ректификационные колонны, адсорберы, абсорберы, экстракторы, выпарные аппараты, кристаллизаторы, аппараты для разделения суспензии — фильтры и центрифуги, сушильное оборудование, аппараты для измельчен 1я, диспергирования, гранулирования, смесители и др. К сиомогательному оборудованию — мерники, сборники, насосы, компрессоры, теплообменники и т. п. [c.21]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    Для оценки диспергирующей способности масел с присадками предложен метод УРЧ8 окисленное масло разбавляют бензином, смешивают с сажей и после центрифугирования смеси определяют поглощение света фугатом, которое характеризует количество сажи, диспергированной в масле [69, с. 291]. Более простой метод основан на прямом определении подвижности диспергированных частиц [80]. По мнению авторов работы [81] явление синергизма в моюще-диспергирующих присадках имеет физический, а не химический характер, и синергетический эффект моюще-диспергирую-щнх присадок и диалкилдитиофосфата бария в основном зависит от поверхностных свойств диспергированных частиц, прежде всего от их заряда. [c.100]

    Поскольку НДС в точке фазового перехода второго рода характеризуются аномально высокой чувствительностью к наличию градиентов силовых нолей, в качестве воздействия, управляющего карбонизуемой нефтяной системой в окрестностях точек фазового перехода, мы предлагаем использовать ультразвуковое поле. Известны такие эффекты ультразвукового воздействия, как звуковое давление, ускорение процессов диффузии и теплопередачи, кавитация, химические эффект ы (сонолиз), усиление процессов диспергирования и коагулирования неоднородных систем, капиллярный эффект и др. Подбирая частоту и иитенсивность УЗ-излучения, можно усиливать те или иные эффекты. [c.25]

    Согласно гипотезе Неймана [106], разрушение эмульсии является коллоидно-физическим процессом, поэтому решающую роль играет не химическая структура деэмульгатора, а его коллоидные свойства, Деэмульгатор, ацсорбируясь на границе раздела, изменяет смачиваемость природных эмульгаторов и способствует переводу их с границы раздела в объем нефтяной или водной фазы, Сопоставляя действие водо- и нефтерастворимых деэмульгаторов, Нейман прншел к заключению, что водорастворимый деэмульгатор, оставаясь в водной фазе, способствует хорошему обезвоживанию нефти, но содержание нефтепродуктов в ней может >1ть высоким, в то время как нефтерастворнмый деэмульгатор остается в обеих фазах и предотвращает диспергирование н фти в воде. Вследствие массопередачи капли воды быстрее коалесцируют. [c.131]

    Стабилизаторы-диспергенты добавляются к топливам, которые склонны к образованию при окпслении нерастворимых продуктов (например, содержащие серу, дизельные топлива с крекинг-компонентами, дистиллятные котельные топлива), с целью предохранения топлив от окисления, а также диспергирования образующихся в них нерастворимых продуктов. Эгп функ-цип могут выполнять в присадке два или несколько различных химических соедпнеппй пли же одно соединение, обладающее и теми и другими свойствамп. [c.324]

    При хранении в таре или на смазанных поверхностях смазка не должна выделять масла. Это свойство обусловлено структурой смазки и ее химической природой и зависит от свойств загустителя, масла пх соотношений присутствия в смазке воды, присадок, примесей условий диспергирования и кристаллизации от всех тех факторов, от которых зависит структурообразо-вание. Прежде всего она зависит от совершенства структурного каркаса, формы, размеров и степени однородности структурных частиц смазки. [c.662]

    Взаимодействие серы с нефтяными остатками по разному протекает при высоких (выше 180-200 °С) и низких (порядка 120-140 °С) температурах [1]. При высоких температурах происходит дегидрогенизация нефтяного остатка, сопровождающаяся выделением сероводорода. При низкю - сера взаимодействует с углеводородами нефтяных остатков без выделения сероводорода. При этом она находится в трех основных состояниях химически связанная, растворенная и диспергированная, причем распределение между разными формами серы зависит от условий введения, свойств нефтяного остатка, количества вводимой серы. [c.76]


Смотреть страницы где упоминается термин Диспергирование химическое: [c.166]    [c.42]    [c.199]    [c.436]    [c.290]    [c.30]    [c.102]    [c.63]   
Физико-химические основы технологии выпускных форм красителей (1974) -- [ c.55 ]




ПОИСК





Смотрите так же термины и статьи:

Диспергирование



© 2025 chem21.info Реклама на сайте