Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Форма и структура коллоидных частиц

    В настоящее время оптические методы являются наиболее распространенными методами определения размера, формы и структуры коллоидных частиц. Это объясняется не только быстротой и удобством этих методов, но и точностью получаемых результатов. Грубые дисперсные системы (суспензии, эмульсии, пены, пыли) обычно исследуют с помощью светового микроскопа. К наиболее часто применяющимся методам исследования высокодисперсных коллоидных систем относятся ультрамикроскопия, электронная микроскопия, нефелометрия и турбидиметрия. Реже применяют метод, основанный на определении двойного лучепреломления в потоке, рентгенографию и электронографию для исследования внутренней структуры и характера внешней поверхности частиц коллоидной системы. [c.44]


    Оптические свойства дисперсных систем используются на практике для изучения их структуры, определения размеров, формы частиц и их концентрации. Все эти определения основаны на соизмеримости электромагнитной световой волны-с Рис. 27. Эффект Тиндаля размерами КОЛЛОИДНЫХ частиц. Так [c.77]

    Коагуляционные структуры образуются в том случае, когда под действием каких-либо причин агрегативная устойчивость коллоидной системы несколько снижается, но не теряется полностью. Если коллоидные частицы имеют форму палочек или вытяну- тых пластинок, то частичное снижение агрегативной устойчивости обозначает уменьшение толщины ионного слоя или сольватной оболочки мицеллы, причем на концах частиц эти факторы устойчивости почти полностью утрачиваются (рис. 85). В результате частицы соединяются своими концами, на которых сохранились только очень тонкие слои дисперсионной среды, образуя пространственную сетку — структуру. Дисперсионная среда находится в ячейках этой сетки (см. рис. 85, г). [c.208]

    Формование — один из основных технологических процессов в производстве катализаторов и адсорбентов в результате этой стадии закладываются форма, структура и качество будущего продукта. Первичное взаимодействие растворов жидкого стекла и сернокислого алюминия (или магния) при синтезе катализатора протекает в коллоидном растворе (золе) с образованием частиц различной формы и размера — микросфер, крупных шариков, таблеток и др. Схема первичного синтеза алюмосиликатного катализатора примерно выражается следующим уравнением  [c.45]

    Характерным свойством коллоидных частиц является их оптическая анизотропия, т. е. различие оптических свойств по различным направлениям. В одних случаях оптическая анизотропия обусловлена внутренним строением частиц, в других — их формой или искусственно вызванной ориентацией частиц. Кроме того, исследование оптической анизотропии при различных условиях — весьма важный метод изучения структуры коллоидных частиц (с использованием поляризованных лучей, т. е. лучей, имеющих преимущественные плоскости колебаний, о которых уже неоднократно упоминалось выше). [c.63]

    Оптические свойства коллоидов тесно связаны с размерами, формой и внутренней структурой коллоидных частиц и поэтому имеют важное значение при изучении коллоидных систем. Характерными для коллоидных систем свойствами являются дифракционное рассеяние света на коллоидных частицах (уравнение П1.1), которое используется, в частности, при нефелометрических измерениях, и флуктуационное светорассеяние на сгущениях концентрации молекул в растворах полимеров (уравнение III.5), применяемое, в частности, для определений молекулярного веса и асимметрии формы макромолекул в растворах. [c.65]


    В настоящее время оптические методы являются наиболее распространенными методами определения размера, формы и структуры коллоидных частиц. Это объясняется не только быстротой и удобством этих методов, но и точностью получаемых результатов. [c.94]

    Оптические свойства коллоидов тесно связаны с размерами, формой и внутренней структурой коллоидных частиц и поэтому имеют важное значение ири изучении коллоидных систем. Характерными для коллоидных систем свойствами являются а ) дифракционное рассеяние света на коллоидных частицах (уравнение 1П.1), которое исполь- [c.71]

    Прямым методом определения размеров и формы коллоидных частиц, молекул вирусов и ряда макромолекул является электронная микроскопия. Внутренняя структура коллоидных частиц и ее изменение при различных процессах изучаются методами рентгенографии и электронографии. [c.72]

    Второй механизм заключается в адсорбции на границе раздела фаз гидролизованных форм, ассоциатов, коллоидных частиц и взвесей, заранее присутствующих в растворе [63, 101]. Этот процесс завершается образованием гелеподобных поверхностных структур. Данный тип СМБ наиболее характерен для технических растворов, условия приготовления которых, как правило, не исключают присутствия в них материала, подходящего для строительства СМБ. [c.185]

    ФОРМА И СТРУКТУРА КОЛЛОИДНЫХ ЧАСТИЦ [c.31]

    Не останавливаясь на этом вопросе, подчеркнем лишь, во-пер-вых, что изучение этого вопроса самыми разнообразными методами неизменно подтверждает кристаллическую структуру дисперсной фазы большинства золей и, во-вторых, что вопрос о форме и структуре коллоидных частиц и макромолекул начинает играть все большую роль в объяснении ряда свойств коллоидных систем, важных не только для теории, но и для практики. Особенно большое значение имеет этот вопрос для растворов высокомолекулярных соединений при изучении их реологических свойств, на чем мы подробно остановимся в дальнейшем. [c.32]

    Гели — образуемые жесткими коллоидными частицами (хрупкие гели) или гибкими макромолекулами (эластичные гели или студни) пространственные структуры, обычно заполненные растворителем. Они отличаются от растворов упругостью формы и отсутствием текучести. Хрупкие гели не набухают и способны к неспецифическому поглощению паров жидкостей в результате образования адсорбционных сольватных слоев и капиллярной конденсации. Эластичные гели могут сильно набухать при избирательном поглощении [c.219]

    Гели и студни. Гелями называют структуры, образуемые коллоидными частицами -или молекулами полимеров в форме пространственных сеток, ячейки которых заполнены дисперсионной средой. Различают хрупкие гели и эластичные. К хрупким гелям относится, например, гель кремниевой кислоты НгЗЮз. Благодаря жесткости всего каркаса хрупкого геля его объем при высушива- [c.90]

    Электронная микроскопия является одним из наиболее совер-щенных методов определения размера и формы коллоидных частиц. Электронный микроскоп позволяет увидеть отдельные коллоидные частицы, крупные макромолекулы и их структуру. [c.394]

    Ультрамикроскоп не позволяет судить о форме и размерах коллоидных частиц, так как его разрешающая способность ограничена слишком большой для этого длиной волны видимого света. Для желаемой характеристики коллоидных частиц необходим прибор, работающий с более коротковолновыми лучами. Таким оказался электронный микроскоп, действие которого основано на использовании пучка электронов, получаемых в специальной катодной трубке и разгоняемых электрическим полем. Если длина волны светового луча, используемого в ультрамикроскопе, равна 500 нм, то длина волны электронного луча, используемого в электронном микроскопе, составляет 0,5 нм. В соответствии с этим, разрешающая способность электронного микроскопа в 1000 раз выше, чем у ультрамикроскопа. Это позволило глубоко проникнуть вглубь материи наблюдать отдельные группы молекул, исследовать структуру катализаторов, изучать строение молекул полимеров (например, белковых веществ) и т. д. [c.277]

    Большинство растворов высокомолекулярных соединений и золи некоторых гидрофобных коллоидов способны при известных условиях переходить в особое состояние, обладающее в большей или меньшей степени свойствами твердого тела. Твердообразная текучая система, образованная коллоидными частицами или макромолекулами высокомолекулярного соединения в форме пространственного сетчатого каркаса, ячейки которого заполнены иммобилизованной жидкостью, называется гелем. Таким образом, гели или, как их еще называют, студни, представляют собой коллоидные системы, потерявшие текучесть в результате возникновения в них внутренних структур (опыт 118—121). [c.229]

    Системы с коагуляционными структурами обладают, как правило, небольшой прочностью, известной пластичностью, а также некоторой эластичностью. Эластические свойства коагуляционных структур, согласно П. А. Ребиндеру, можно объяснить изменением энтропии системы в результате переориентации образующих систему структурных элементов, сопутствующей изменению ее формы. Такими структурными элементами служат отдельные коллоидные частицы (в отличие от высокомолекулярных соединений где эластическая деформация связана с изменением взаимной ориентации звеньев молекулярных цепей). Системы с коагуляционными структурами проявляют также ползучесть, т. е. способность при течении к медленному развитию значительных остаточных деформаций практически без заметного разрушения пространственной сетки. Ползучесть системы определяется высокой, хотя и вполне доступной измерению вязкостью в области весьма малых скоростей течения. Только при больших скоростях течения в таких системах происходит значительное разрушение структуры, так как связи мекду частицами не успевают восстанавливаться и скорость разрушения становится больше скорости восстановления. [c.320]


    Результаты изучения золей оптическими методами показали, что коллоидные частицы имеют в большинстве случаев не шарообразную, а палочковидную или пластинчатую форму. Данные исследования их внутренней структуры при помощи рентгеновских лучей говорят за то, что они являются, как правило, образованиями микрокристаллическими. Это относится даже к таким веществам, как кремневая кислота, крахмал, каучук и т. п. [c.613]

    Если в электронном микроскопе используется поглощение электронов для изучения внешней формы и размеров коллоидных частиц и макромолекул, то методы рентгенографии и электронографии при исследовании внутренней структуры коллоидных частиц и полимерных материалов основаны на диффракции рентгеновых лучей, или, соответственно, электронов. При регулярном расположении атомов, например в кристалле, интерференция рассеянных волн приводит к определенной системе диффракционных пятен. Положение пятен определяется законом Вульфа-Брэгга  [c.70]

    Пузырьки газов в пенах имеют размеры порядка миллиметров (и даже сантиметров) они разделены тонкими жидкими пленками, которые обладают размером коллоидных частиц. Газовые пузырьки взаимно сдавливают друг друга, теряют правильную сферическую форму, а сама пена приобретает ячеистую сотообразную структуру (рис. 139). [c.347]

    Частицы асфальтенов не шарообразны, их форма неправильная. У частиц имеются ребра, острые углы. На ребрах и углах сольватный слой более тонок, а местами и полностью отсутствует. Углами и ребрами частицы притягиваются друг к другу. Взаимное притяжение частиц асфальтенов приводит к возникновению пространственных сеток, т.е. к возникновению объемной структуры. Когда говорят о возникновении структуры, имеют в виду суммарный, результирующий эффект взаимодействия ребрами и углами частиц асфальтенов. Из-за теплового движения молекул дисперсионной среды частицы асфальтенов перемещаются в жидкости. Из-за своей массы, большей, чем у молекул дисперсионной среды они значительное время находятся в положениях, когда между ними имеет место более сильное взаимодействие. Иными словами, структуры из частиц асфальтенов возникают, разрушаются и вновь возникают. В разных точках объема нефти структуры возникают, конечно, не одновременно. Но суммарный результат тот же - жидкость оказывается структурированной. Такие структуры в коллоидной химии и реологии называют коагуляционными. Коагуляция - слипание коллоидных частиц при столкновении в процессе броуновского движения, перемешивания или направленного перемещения в силовом поле.) [c.7]

    Оптические методы исследюания широко применяются для определения размеров, формы и структуры коллоидных частиц. К ним относятся  [c.99]

    Исследования проводились на электронном микроскопе системы Сименс , который при соответствующем переключении может работать как электронограф. Последовательное изучение одного и того же препарата при помощи электронного микроскопа и электронографа дает полное представление как о форме, так и о структуре коллоидных частиц. Препараты для исследования готовились следующим образом. В качестве объектоно-сителя применялись платино-иридиевые диафрагмы с диаметром отверстия от 0,05 до 0,08 мм. На отверстие диафрагмы наносилась коллоксили-новая пленка толщиной 100—200 А, которая получалась из раствора коллоксилина в амилацетате на поверхности воды. Нанесенная на диафрагмы коллоксилиновая пленка высушивалась на воздухе под стеклянным колпаком, затем на пленку наносилась капля исследуемого раствора, которая осторожно снималась кусочком фильтровальной бумаги. Снимать каплю при наших исследованиях было необходимо, так как мы изучали поведение коллоидных частиц в процессе их образования и последующего старения. При медленном высыхании капли коллоидные частицы могут претерпеть изменения, причем, как показал опыт, скорость протекающих [c.168]

    Проф. А. В. Нагорный (1934 г.) в своей монографии Динамика коллоидных систем , исходя из утверждения Дюкло, а также из анализа условий возникновения коллоидных систем, видит причину уменьшения факторов стабилизации в самой структуре коллоидных частиц. Так как коллоидные частицы, — говорит он, — являются системами историческими, то они, очевидно, не В озникают сразу в окончательной форме, а развиваются ионы, атомы и молекулы, входящие в ИХ состав, постепенно перераспределяются, укладываются плотнее и более стойко под влиянием сил, которые обусловливают возникновение кристаллических решеток. Как результат Этого, возможно, уменьшается величина заряда и гидратационных сил . [c.314]

    Оптические методы принадлежат к самым распространенным методам исследования состава и структуры веществ и материалов. В коллоидной. химии исследуют состав и структуру не только (нлн пе столько) отдельных фаз, но и в первую очередь межфазных поверхностных слоев и структуры дисперсных систем определяю дисперсность системы (площадь поверхности), форму н строа ние элементов структуры (отдельных частиц), пористость, про< филь поверхности, толщину слоев, их состав и природу сил [c.245]

    При всем многообразии форм и размеров частиц загустителя, образующихся при охлаждении, смеси компонентов, общим для них является способ формирования структурного каркаса. В процессе охлаждения коллоидного (мыльные смазки) или истинного (углеводородные смазки) раствора происходит кристаллизация загустителя с одновременным ростом и связыванием кристаллов (bo iokoh) друг с другом и образованием кристаллической сетки. В обычных коллоидных системах (с малым содержанием твердой фазы) частицы дисперсной фазы при столкновениях коагулируют и выпадают в осадок. Высокая концентрация дисперсной фазы в смазках препятствует коагуляции частиц, они формируют пространственный структурный каркас. Чем выше анизометричность (соотношение их длины и ширины) частиц загустителя, тем более прочную структуру они образуют. [c.356]

    Особое место занимают исследования коллоидной структуры нефтяных дисперсных систем методом рассеяния рентгеновских лучей под малыми углами [67 — 70]. Указанный метод проявляет чувствительность к полидисперсности и форме частиц исследуемых объектов, не зависит от их оптической плотности и многокомпонетнос-ти. Однако этим методом можно фиксировать только размеры ядра структурного образования, не включая сорбционно-сольватный слой, что связано с незначительным расхождением в значениях электронных плотностей сольватной оболочки и дисперсионной среды. Кроме этого, метод малоуглового рассеяния позволяет получать достаточно воспроизводимые результаты в случае слабоструктурированных систем, когда расстояние между соседними структурными образованиями намного превышает их размеры. С помощью рассматриваемого метода изучено [71] распределение по размерам структурных образований в нефтяных профилактических средствах. Показано, что в этих системах размеры частиц дисперсной фазы составляют от 1,7-3 нм до 40 нм, причем основу коллоидной структуры составляют частицы меньших размеров. [c.84]

    Тпксотропия — явление довольно распространенное. Оно наблюдается в золях V2O5, WO3, РегОз, в различных суспензиях бентонита, в растворах вируса табачной мозаики, миозина. Причем тиксот-ропныегели легче всего образуются у золей, обладающих асимметричным строением частиц (например, палочкообразной формы). Тиксотропные структуры возникают лишь при определенных концентрациях коллоидных частиц и электролитов. Для обратимого (тиксотропного) застудневания требуется определенное значение дзета-потенциала, лежащее выше критического. В этом случае заряд коллоидных частиц хотя и понижен, но не в такой степени, что- бы начался процесс коагуляции. В этих условиях уже становятся заметными силы взаимодействия между отдельными частицами дис- персной фазы, они образуют своеобразную сетку, каркас. При сильном встряхивании связь между частицами дисперсной фазы нарушается — тиксотропный гель переходит в золь. В состоянии покоя связи в результате соударения частиц при броуновском движении восстанавливаются, золь вновь переходит в тиксотропный гель и т. д. [c.379]

    Процесс застудневания даже при низкой температуре требует продолжительного времени (от минут до недель) для формирования ячеистой объемной сетки. Время, необходимое для ее образования, называется периодом созревания. Продоллштельность созревания различна в зависимости от концентрации, природы вещества, а также условий желатинирования. Для создания ячеистой структуры в гелях имеет значение также форма коллоидных частиц. Особенно хорошо протекают процессы желатинирования в золях, состоящих из палочковидных или лентообразных по форме частиц. При наличии таких форм легко возникают крупноячеистые структуры и могут поглощаться большие количества жидкости. Даже из гидрофобного коллоида, образованного окисью ванадия УгО , также характеризующегося лентовидными частицами, удается приготовить гели, содержащие до 99,9% воды. [c.202]

    В это же время образуются в пересыщенном растворе аморфные частички гидрата окиси кальция, гидраты алюминатов и ферритов кальция и гидросульфоалюминаты [464—466, 57]. Все они возникают в пересыщенном растворе в большинстве случаев в форме сферолитов, приобретают свойства коллоидных частиц и вступают в коагуляционное взаимодействие. К концу I стадии через 1,5 ч (пример — тампонажного цемента для горячих скважин, В/Ц = = 0,5) образуется пространственный каркас коагуляционной структуры, в которую входят покрытые пленками гидратных новообразований частички кленкера. Во II стадии начинаются деструктивные явления, отражающиеся на кривой структурообразования резкими падениями модуля упругости (от 10 дин/см до 3-10 дин/см ). [c.192]

    Пузырьки газов в пеиах, имеющие размеры порядка миллиметров (и дал<е сантиметров), разделены тонкими (размер коллоидных частиц) пленками жидкой дисперсионной среды. Газовые пузырьки взаимно сдавливают друг друга, теряют правильную сферическую форму, в результате чего пена приобретает ячеистую сотообразную структуру. [c.395]

    При реагентной обработке осадка происходит коагуляция - процесс агрегации тонкодисперсных и коллоидных частиц. Образование при этом крупных хлопьев с разрывом сольвентных оболочек и изменением форм связи воды способствует изменению структуры осадка и улучшению его водоотдающих свойств. В качестве коагулянтов используют соли железа, алюминия [(Ре304. Ре2804)з, РеСЬ, А12(304)з] и известь. Эти соли вводят в осадок в виде 10 %-ных растворов. Могут быть также использованы отходы, содержащие РеС1з, А12(804)з и др. Наиболее эффективным является применение хлорного железа совместно с известью. Доза хлорного железа составляет 5-8%, извести 15-30% (от массы сухого вещества осадка). Недостатком реагентной обработки является высокая стоимость, повышенная коррозия материалов, сложность транспортирования, хранения и дозирования реагентов. [c.128]

    Кластерные частицы-безлигандные металлич. К. в виде ультрадисперсных металлич. систем или голых кластерных ионов. Это особое состояние в-ва, занимающее промежут. положение между кластерными соед., с одной стороны, и коллоидными частицами, чернями, порошками и, наконец, компактными материалами, с другой. Они имеют след, отличит, особенности доля поверхностных атомов металла соизмерима с числом атомов в объеме частицы поверхностная и внутр. энергия отдельно взятой частицы также соизмеримы кристаллич. структура кластерных частиц отличается от структуры массивного образца металла - отсутствует плотная упаковка, увеличены расстояния между атомами и т. д. Форма и структура кластерной частицы носят неравновесный характер и соответствуют состояниям с энергией, отличной от минимальной. В кластерном состоянии могут находиться как любые металлы и сплавы, так и карбиды, нитриды, оксиды, бориды, сульфиды и др., в т. ч. кластерные частицы могут присутствовать в керамич. и композиц. материалах. [c.402]

    Адсорбционная флокуляция происходит, как правило, при оптим. соотношении концентраций Ф. и частиц дисперсной фазы. На кинетику и полноту флокуляции, а также структуру и св-ва флокул влияют, с одной стороны, мол. масса, степень ионизации, конформация макромолекул Ф., с доугой - знак и плотность поверхностных зарядов, размер и форма коллоидных частиц, хим. состав их пов-сти. Наиб, эффективна флокуляция при степени адсорбционного заполнения пов-сти частиц полимером ок.. 0,5. Избыток Ф. может не только ухудшить флокуляцию, но вызвать обратный процесс - де-флокуляцию, или пептизацию. [c.106]

    Электропроводность коллоидного раствора слагается из электропроводности, обусловленной коллоидными частицами, и электропроводности находящихся в растворе электролитов. Если посторонних электролитов в растворе очень мало (высокоочищенные растворы белков и полиэлектролитов), измерениями электропроводности можно воспользоваться для определения удельного заряда или подвижности частиц, однако, в лиофобных золях определить собственную электропроводность коллоидных частиц довольно трудно. Существенное влияние на собственную электропроводность частиц оказывает структура двойного электрического слоя, так как подвижность компенсирующих ионов ограничивается электрофоретическим торможением со стороны коллоидных частиц (более медленно передвигающихся в поле, чем ионы) и скоростью перестройки ионной атмосферы в переменном поле (эффект релаксации). В свою очередь, измерениями электропроводности в широком диапазоне частот (дисперсия электропроводности) пользуются при изучении структуры двойного слоя. В растворах полиэлектролитов (например, полиакриловой кислоты) измерения эквивалентной электропроводности X при различных концентрациях представляют интерес для характеристики формы молекул, так как значения X падают в той области концентраций, в которой расстояния между молекулами полимера становятся велики по сравнению с толщиной двойного электрического слоя (Каргин). Измерения электропроводности коллоидных растворов при их взаимодействии с нейтральными солями (метод кондуктометриче-ского титрования) широко применялись при исследовании состава двойного слоя и процессов вытеснения из коллоидных частиц, например, подвижных Н+-ионов (Паули, Рабинович). [c.131]

    Гелями называют структуры, образуемые коллоидными частицами или дюлекулами полимеров в форме пространственных сеток, ячейки которых обычно заполнены растворителем. Гели отличаются как от компактных коагулятов или твердых полимеров, так и от разбавленных растворов, в которых каждая коллоидная частица или макромолекула являются кинетически индивидуальными частицами. Занимая в ряде отноп1ений промежуточное положение между растворами и твердыми полимерами, гели обладают также многилт своеобразными свойствами и имеют большое практическое значение. В частности, к гелям относятся коллаген, мясо скота и рыб, различные пористые и ионообменные адсорбенты, ультрафильтры и искусственные мембраны, а также волокна мышечных тканей, клеточные оболочки, хрящч, оболочки эритроцитов и различные мембраны в организме. [c.198]


Смотреть страницы где упоминается термин Форма и структура коллоидных частиц: [c.169]    [c.389]    [c.231]    [c.231]    [c.118]   
Смотреть главы в:

Краткий курс коллойдной химии -> Форма и структура коллоидных частиц




ПОИСК





Смотрите так же термины и статьи:

Коллоидные частицы

Коллоидные частицы форма

Частицы форма



© 2025 chem21.info Реклама на сайте