Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика в регулировании результатов реакции

    Равновесие и кинетика в регулировании результатов реакции. В гл. 8 [c.195]

    Установление оптимального режима осуществления процесса, возможность регулирования соотношения между продуктами с целью придания процессу необходимой селективности, подавление нежелательного глубокого выгорания углеводорода, рациональный выбор способа стимулирования процесса, управление процессом путем изменения условий по его ходу становятся возможными в результате исследования элементарных и макроскопических стадий, изучения кинетики и химизма реакции. Жидкофазное окисление углеводородов протекает при более низких температурах, более мягко , нежели газофазное окисление тех Же веществ. Современная техника лабораторного эксперимента и аппаратурные возможности химических производств таковы, что, применяя более или менее повышенные давления, можно проводить многие реакции на режимах жидкофазного окисления (при температурах и давлениях, близких к критическим). [c.7]


    Влияние температуры. Поскольку значения энергии активации отдельных реакций термолиза различаются между собой весьма существенно, то температура как параметр управления процессом позволяет обеспечить не только требуемую скорость термолиза, а прежде всего регулировать соотношение между скоростями распада и уплотнения и, что особенно важно, между скоростями реакций поликонденсации, тем самым свойства фаз и условия кристаллизации мезофазы. При этом регулированием продолжительности термолиза представляется возможным обрывать на требуемой стадии "химическую эволюцию" в зависимости от целевого назначения процесса. С позиций получения кокса с лучшей упорядоченностью структуры коксование сырья целесообразно проводить при оптимальной температуре. При пониженной температуре ввиду малой скорости реакций деструкции в продуктах термолиза будут преобладать нафтено-ароматические структуры с короткими алкильными цепями, которые будут препятствовать дальнейшим реакциям уплотнения и формированию мезофазы. При температуре выше оптимальной скорость реакций деструкции и поликонденсации резко возрастают. Вследствие мгновенного образования большого числа центров кристаллизации коксующийся слой быстро теряет пластичность, в результате чего образуется дисперсная система с преобладанием мелких кристаллов. Возникающие при этом сшивки и связи между соседними кристаллами затрудняют перемещение и рост ароматических структур. Более упорядоченная структура кокса получается при средней (оптимальной) температуре коксования (= 480 °С), когда скорость реакций деструкции и уплотнения соизмерима с кинетикой роста мезофазы. Коксующий слой при этом более длительное время остается пластичным, что способствует формированию крупных сфер мезофазы и более совершенных кристаллитов кокса. [c.177]

    Мы смогли остановиться лишь на небольшой части встречаюш ихся здесь проблем и полученных интересных результатов. В частности, не было возможности упомянуть очень важный и интересный вопрос о механизмах регулирования катализаторами химического и пространственного строения продуктов реакции и тесно связанную с этим проблему общих и специфических механизмов осуществления кибернетических функций в гомогенном и гетерогенном катализе. Без существенного продвижения наших знаний о внутренней кибернетике катализа и о ее механизмах вряд ли возможны крупные успехи в предвидении катализаторов для новых типов сложных реакций. Предпосылки для такого предвидения имеются и заключаются они в следующем. Установлены определенные широкие качественные корреляции между электронно-физическими свойствами твердых тел и их каталитической активностью. Многое сделано для выяснения механизма модифицирования и развития теории приготовления катализаторов. Серьезные успехи достигнуты в кинетике каталитических процессов и в изучении их механизмов. Благотворное влияние оказывает развитие родственных гетерогенному катализу новых разделов гомогенного катализа. Быстро совершенствуется экспериментальная техника исследований. Поэтому, несмотря на отсутствие законченных обобщающих теорий катализа, уже сейчас имеется возможность решать экспериментальные задачи изыскания новых и улучшения известных катализаторов быстрее и эффективнее, чем раньше. В ряде случаев возможно и предвидение катализаторов для простейших реакций. [c.37]


    В настоящей работе приводятся результаты по трем таким реакциям отщепление хлористого водорода от алкилгалогенидов окисление хлористого водорода до хлора и воды (реакция Дикона) и окисление двуокиси серы в серный ангидрид. Обе реакции окисления в промышленных условиях обы ч-но проводят па пористых твердых носителях, хотя известно, что жидкая фаза может присутствовать в порах. Однако нри изучении кинетики в лабораторных условиях предпочтительно контактировать газ непосредственно с расплавом. При этом исключается диффузия в поры может быть четко определен состав катализатора температура катализатора поддается регулированию, т. е. в нем отсутствуют точки перегрева м ожно получать вполне определенные величины поверхности. [c.425]

    Важнейшим вопросом в процессе абсорбции этилена серной кислотой является отвод тепла для равномерного поддержания температуры по всей высоте колонны. Повышение температуры приводит к усилению реакций полимеразации и обуглероживания, а при низких температурах понижается скорость взаимодействия кислоты и этилена. Равномерному регулированию температуры способствует подача свежих газа и концентрированной кислоты в противотоке. Свежая концентрированная серная кислота плохо растворяет этилен и скорость их взаимодействия невелика, по мере перетока кислоты с верхних тарелок на нижние повышается концентрация растворенных в них моно- и диэтилсульфатов, что способствует повышению растворимости в кислоте этилена и скорости их взаимодействия. На нижних тарелках, несмотря на большую растворимость этилена, благодаря высокому содержанию сульфатов в кислоте и этилена в барботируемом газе, скорость взаимодействия кислоты и этилена сравнительно невелика в результате понижения концентрации кислоты. Наибольшее количество этилена поглощается на средних тарелках. Благодаря высокой концентрации свежей кислоты на верхних тарелках, здесь достигается максимальное использование этилена. В зависимости от условий процесса использование этилена составляет 93—98%. В обычных абсорбционных колоннах имеется 18—20 тарелок если на верхних и нижних тарелках абсорбируется 1,5—2% от общего количества этилена, то в каждой из средних тарелок поглощается 15—20% этилена. Знание кинетики абсорбции по высоте колонны весьма важно с точки зрения расчета и устройства холодильников, обеспечивающих отвод необходимого количества тепла из каждой тарелки. [c.105]

    Как выяснено многочисленными исследованиями, процессы электроосаждения металлов на твердых металлических электродах являются одними из наиболее сложных электрохимических реакций. Они, как правило, протекают через несколько стадий, включающих процессы диффузии, адсорбции, химической реакции, разряда и кристаллизации участвующих в электрохимическом процессе частиц. Соотно-щение скоростей этих стадий определяет кинетику процесса как катодного осаждения, так и анодного растворения металла. Электроосаждение металлов из водных растворов также обычно сопровождается протеканием параллельной реакции выделения водорода, участием в реакции других частиц, находящихся в электролите, примесей ионов металлов, органических соединений, вводимых для регулирования качества осадков. В результате протекания реакции происходят изменения состава раствора у поверхности электрода и изменения состояния поверхности, что особенно сильно проявляется в первые моменты электролиза после включения тока. Несомненно, что все предшествующие электрокристаллизации металла стадии влияют на нее и, таким образом, определяют структуру, физико-механические и химические свойства электроосажденного металла. [c.4]


Смотреть страницы где упоминается термин Кинетика в регулировании результатов реакции: [c.43]    [c.2]    [c.20]    [c.371]    [c.21]    [c.20]   
Органическая химия (1964) -- [ c.195 , c.519 ]

Органическая химия (1964) -- [ c.195 , c.519 ]




ПОИСК







© 2025 chem21.info Реклама на сайте