Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процессы переработки газа абсорбция

    В разделе III были рассмотрены все основные способы и процессы переработки газа, различные варианты технологического оформления этих способов (т. е. различные технологические схемы). Однако, несмотря на их различие, большинство узлов и простых процессов являются общими для всех схем и способов переработки газа. Так, общими являются процессы очистки от механических примесей и капельной жидкости очистки от СО2 и HjS (если они присутствуют в сыром газе) осушки от влаги компримирования нагнетания жидкости теплообмена холодильные, циклы низкотемпературная конденсация и сепарация двухфазных потоков смешение и разделение потоков. Дополнительными узлами в схемах НТК являются деэтанизация ШФУ, деметанизация и в самых современных схемах дросселирование жидких потоков и детандирование. Для схем НТА такими дополнительными узлами являются абсорбция, АОК и десорбция, а для схем НТР — ректификация. Поэтому чтобы рассчитать любую современную схему переработки газа, необходимо уметь рассчитывать следующие процессы  [c.268]


    При переработке газов с небольшим содержанием легких углеводородов (метан, этан, этилен) целесообразно процесс абсорбции — десорбции проводить в одном аппарате — фракционирующем абсорбере, в этом случае верхняя часть аппарата является абсорбером, нижняя — отпарной колонной. [c.271]

    Способы разделения газовых смесей. Для разделения смеси газов на индивидуальные компоненты или пригодные для дальнейшей переработки технические фракции применяются следующие процессы конденсация, компрессия, абсорбция, ректификат ция, адсорбция. На ГФУ эти процессы комбинируются в различ- ных сочета ниях. [c.287]

    Процессы переработки газа делятся на две группы вспомогательные И основные. К вспомогательным относятся сепарация газа с отделением механических примесей и влаги и абсорбционная осушка газа. К основным процессам относятся процессы выделения кислых компонентов из газа и разделение углеводородных газов на фракции. На ГПЗ комплексно используются процессы сепарации, физической и химической абсорбции, адсорбции и ректификации. [c.177]

    Метод НТА применим для переработки газов различного состава (от жирных до тощих). При переработке жирных газов в процессе охлаждения перед абсорбцией конденсируется большая часть углеводородной жидкости, которая, отделяясь в сепараторе, снижает нагрузку на абсорбционный аппарат. [c.161]

    В нефтяной и газовой промышленности широкое распространение при обработке приводных и попутных газов получили процессы осушки и очистки газа, процессы газоразделения методами низкотемпературной абсорбции, низкотемпературной конденсации и ректификации, а также стабилизации конденсата. При этом, если в недалеком прошлом подготовка газа на промыслах ограничивалась осушкой и выделением конденсата, то в последние годы в связи с открытием и вводом в эксплуатацию крупных месторождений газа, в составе которого наряду с легкими углеводородами могут содержаться в большом количестве тяжелые углеводороды, сероводород, диокись углерода, меркаптаны и тяжелые парафиновые углеводороды, промысловая подготовка газа по своим функциям и процессам стала приближаться к технологии, на которой базируются очистка и переработка газов на газо- и нефтеперерабатывающих заводах [10]. [c.31]

    СОз из газа служит методом получения сырья для последующей его переработки. В ходе обычного процесса очистки газа от СО3 карбонат щелочного металла в абсорбере частично превращается в бикарбонат в регенераторе, обогреваемом водяным паром, он вновь переходит в карбонат. Вследствие низкой щелочности раствора абсорбция протекает очень медленно поэтому обычно применяют два работающих последовательно насадочных абсорбера. Основные недостатки процесса — низкая степень извлечения СО3 и значительный расход водяного пара на регенерацию раствора. Из-за этих недостатков на большинстве современных установок очистки газа от СОз применяют водные растворы моноэтаноламина (см. гл. вторую и третью). [c.86]


    Значительное расширение ассортимента нефтепродуктов и дальнейшее повышение требовании к их качеству в связи с интенсивным развитием техники обусловили необходимость использования широкой гаммы процессов химичесК(ЗЙ технологии при переработке нефти и газа имеются в виду такие процессы, как ректификация, абсорбция, экстракция, адсорбция, сушка, отстаивание, фильтрование, центрифугирование и др., а также различные химические и каталитические процессы пиролиз, каталитический крекинг, риформинг, гидроочистка и др. Это позволило ориентировать нефтегазопереработку на обеспечение народного хозяйства не только топливом, маслами и другими товарными продуктами, но и дешевым сырьем для химической и нефтехимической отраслей промышленности, производящих различные синте тические продукты пластические массы, синтетические каучуки, химические волокна, спирты, синтетические масла и др. [c.7]

    Процесс переработки газа включает отделение образовавшихся при пиролизе ароматических углеводородов, очистку газа и абсорбцию ацетилена. Из остаточных газов выделяются этилен и окись углерода. Остающаяся часть используется как топливо. [c.97]

    В США на долю НТА и НТК приходится около 65% всех мощностей по переработке газа, т. е. процессы низкотемпературной абсорбции и низкотемпературной конденсации стали основными технологическими процессами. Однако число установок, работающих по схеме НТА, постоянно уменьшается, а число установок НТК с турбодетандерными расширительными машинами возрастает (за 1978 г. число их увеличилось с 96 до 150) [19]. Использование прогрессивных технологических процессов позволило стабилизировать производство сжиженных газов в стране, несмотря на ухудшение качества сырья и снижение объема пере-)аботки газа с 581 млрд. м в 1970 г. до 463 млрд. м в 1979 г. 1ри этом объем переработки нефтяного газа, имеющего в основном высокое содержание пропана и более тяжелых углеводородов, уменьшился соответственно со 174 до 102 млрд. м . За истекшие 10 лет объем переработки нефтяного и природного газа находился на уровне 80—85% от товарной его добычи (на ГПЗ перерабатывают 92% добываемого нефтяного газа) [19]. [c.14]

    С понижением температуры и повышением давления растворимость газов увеличивается. Так как многие процессы переработки газов проводят под давлением, то абсорбцию осуществляют также под давлением без дополнительных затрат на компрессию газов. Жидкостные способы часто применяют для очистки газов от примесей с высокими начальными их концентрациями. [c.178]

    В основе многих производств химической и некоторых других отраслей промышленности лежат процессы переработки газо-жид-костных систем. К таким процессам относятся абсорбция и десорбция газов, испарение и конденсация жидкостей при непосредственном соприкосновении жидкой и газовой фаз (в частности, при ректификации) и другие процессы, многие из которых связаны с теплопередачей между жидкостью и газом. [c.5]

    Промысловая переработка газа связана с разделением многокомпонентных газообразных или жидких смесей на отдельные компоненты или группы компонентов. Для этого используются такие массообменные процессы, как абсорбция, адсорбция, экстракция и ректификация. [c.49]

    Анализ перечня факторов показывает, что чисто химические оказывают только часть общего влияния. Иногда они определяют в целом скорость процесса, например при каталитическом его осуществлении. Для гетерогенных некаталитических процессов переработки полидисперсных, полиминеральных систем оценка и выделение в отдельную группу химических факторов представляет подчас трудноразрешимую задачу. Сопряжение технологических стадий (кристаллизация — фильтрование, окисление газа—абсорбция продукта — -очистка выхлопного газа и др.) приводит к тому, что скорость процесса определяется скоростью лимитирующей стадии. [c.194]

    При выборе оптимального варианта переработки газа по схеме НТК в качестве критерия оптимизации была принята температура конденсации газа. При этом давление в узле конденсации газа и деэтанизации конденсата во всех вариантах принято постоянным и равным 3.5 МПа. Изменение количества циркулирующего абсорбента в схемах НТА, а также температуры охлаждения газа в схемах НТК позволяет варьировать отбор пропана и более тяжелых углеводородов, добиваясь нахождения их оптимального значения. Во всех случаях целевыми компонентами являлись пропан + высшие. Известно, что энергозатраты на проведение процесса абсорбции в основном складываются из затрат на компримирование газа, охлаждение газа и тощего абсорбента, перекачку циркулирующего абсорбента. Энергозатраты на компримирование газа во всех вариантах практически постоянны. Энергозатраты на охлаждение газа и тощего абсорбента зависят от состава газа и удельного расхода абсорбента. [c.254]

    Эффективность использования углеводородных газов в том или ином направлении значительно повысится, если эти газы предварительно очистить от механических твердых и жидких примесей и нежелательных газообразных компонентов (сероводород, углекислота), а углеводородную часть в случае необходимости разделить на индивидуальные компоненты или группы, близкие по своим свойствам, компонентов. В связи с этим в книге рассмотрены процессы очистки газа, а также процессы первичной переработки газа, такие, как компрессия, абсорбция, адсорбция, низкотемпературная конденсация и ректификация углеводородных газов. Обычно все эти [c.7]


    Процессы физической переработки природных газов связаны с изменением состояния газов, с изменением совокупности их свойств, с переходом компонентов смесп пз одной фазы в другую, например из газообразной в жидкую (процессы конденсации и абсорбции газов) и обратно (процессы испарения сжиженных газов и десорбции растворенных газов). При изучении процессов переработки природных газов приходится определять свойства отдельных компонентов природных газов и свойства их смесей или растворов. [c.9]

    Обширные экспериментальные исследования, проведенные Горным бюро США во время первой мировой войны, по изысканию адсорбентов для защиты от боевых отравляющих газов, привели к разработке процесса адсорбции активированным углем для извлечения газового бензина из природного газа 15, 6]. В начале 20-х годов зародившиеся процессы переработки природного газа разрослись в крупную отрасль промышленности. Начавшееся широкое строительство газобензиновых установок потребовало выбора наиболее эффективных и экономичных процессов. Промышленность вскоре отказалась от установок, работающих по простой компрессионной схеме в середине и конце 20-х годов появились газобензиновые адсорбционные установки, заменившие или дополнившие построенные до этого установки масляной абсорбции [4, 7, 22, 29]. [c.29]

    В то время, когда основной задачей переработки газа было извлечение из него пропана и бутанов, абсорбция считалась ведущим процессом газопереработки. Лишь с возрастанием по- [c.190]

    На основании зависимости Р—<р можно сделать вывод, что в целях извлечения пропана, проведение процесса абсорбции при давлении свыше 7,0 МПа нецелесообразно. Однако, для переработки газов в системе сайклинг-процесса и при подготовке их к дальнему транспортированию экономически целесообразным может оказаться абсорбционный процесс и при давлениях выше 7 МПа. В данном случае при выборе значения давления необходимо провести технико-экономический анализ с учетом конкретных условий (расходы на дожатие газа в сайклинг-процессе и транспор Гирование, количество извлекаемых продуктов и т. д.). [c.202]

    Для обезвреживания газов и их сепарации применяют основные процессы химической технологии абсорбцию, адсорбцию, осаждение, фильтрование, термическую переработку, хемосорбцию. [c.43]

    Метод 82-95 основан на физической абсорбции примесей газовой смеси, что облегчает регенерацию насыщенного абсорбента. Известно, что с понижением температуры и повышением давления растворимость газов увеличивается и, следовательно, сокращается расход абсорбента. Так как многие процессы получения и переработки газов проводят под давлением, то абсорбцию можно также осуществлять под давлением, без дополнительных затрат на компрессию очищаемого газа. [c.278]

    Особенно часто газовые эмульсии образуются в различных технологических процессах, например, при абсорбции и десорбции газов в жидкостях самых различных видов кипении жидкостей при переработке высоковязких растворов и расплавов полимеров (в процессах получения лаков, пленок, химических волокон, кинофотоматериалов) при варке стекла и изготовлении стеклянных изделий в производстве вин (шампанских), пива, газированных напитков при получении строительных материалов, очистке сточных вод при производстве и очистке металлов и во многих других случаях. [c.4]

    Тяжелые углеводороды, содержащиеся в газе, выделяют главным образом для облегчения условий компрессии, создания нормальных условий для осушки пирогаза и удаления из него методом гидрирования ацетиленовых примесей. В настоящее время для выделения тяжелых углеводородов из газа пиролиза применяют процессы конденсации и абсорбции. Наиболее просто тяжелые углеводороды выделяются при переработке газа пиролиза этана. В этом случае газ на выходе из компрессора промывают маслом, а иногда дополнительно очищают на угольных адсорберах. [c.110]

    Количество башен и схема орошения. Процесс переработки сернистого ангидрида башенным способом включает две основные стадии окисление ЗОг и получение серной кислоты и абсорбцию окислов азота из отходящих газов. [c.121]

    Схемы абсорбционного отделения. Процесс переработки нитрозных газов, полученных в отделении конверсии аммиака, в азотную кислоту состоит из окисления оксида (II)N0 кислородом газа до оксида (IV)N02 и абсорбции оксида (IV) N02 с получением азотной кислоты. Практически эти две стадии процесса получения азотном кислоты происходят одновременно. Абсорбция оксидов протекает при атмосферном или повышенном давлении. [c.32]

    На рис. 13-4 показаны кривые, построенные по практическим данным. Из рисунка видно, что основное количество 50, перерабатывается в первых башнях 1 и 2, а максимальное количество окислов азота газ содержит примерно в средней части продукционной башни 3. В нижней части этой башни преобладает процесс переработки сернистого ангидрида, сопровождающийся выделением окислов азота в газовую фазу, в верхней части башни превалирует процесс абсорбции окислов азота, и содержание их в газовой фазе начинает уменьшаться. [c.358]

    На рис. 9-9 показаны кривые, построенные по практическим данным. Из рисунка видно, что основное количество ЗОд перерабатывается в башнях 1 н 2, а максимальное количество оксидов азота содержится в газе, находящемся примерно в средней части продукционной башни 3. В нижней части этой башни протекает главным образом процесс переработки ЗОз, сопровождающийся выделением оксида азота в газовую фазу, в верхней части башни — процесс их абсорбции, причем содержание оксидов азота в газовой фазе начинает уменьшаться. [c.262]

    Астраханском и Западносибирском газохимических комплексах (ГХК) и Сосногорском газоперераба-тьшающем заводе, на которые поступает сложный по составу газ ряда крупных газоконденсатных месторождений. На рис. 2.45 приведена блок-схема Оренбургского ГХК, перерабатьшающего газ Оренбургского месторождения. Товарной продукцией этого комплекса являются сухой и сжиженный газ, этан, конденсат, сера и i елий. В основе процесса переработки газа лежат физические методы низкотемпературной сепарации (конденсация паров вещества с понижением их температуры), абсорбции (избирательное поглощение газов или паров жидкими поглотителями-абсорбентами), адсорбции (поглощение вещества поверхностью твердого поглотителя-адсорбента) и др. Эти методы используются обычно в совмещенном технологическом режиме, определяя конструктивные особенности используемьк установок. [c.120]

    Основное расчетное уравнение по этому методу — уравнение Кремсера—Брауна. Кроме того, для расчета используют график Кремсера [8]. В связи с ограничениями, принятыми при выводе уравнений, метод Кремсера—Брауна, строго говоря, применим для расчета процесса абсорбции так называемых тощих газов, когда потоки по высоте колонны действительно меняются мало, так как из газа в жидкость переходит не большое количество компонентов и выделяется незначительное количество теплоты абсорбции, т. е. температура процесса также меняется незначительно. Поэтому ряд работ был нailpaвлeн на устранение указанного недостатка метода Кремсера—Брауна [16, 171. Однако для предварительной технико-экономической оценки процесса абсорбции газа любого состава, особенно при ручном счете, метод Кремсера — Брауна наиболее удачен. Кроме того, при переработке газа по схеме НТА в абсорбер поступает всегда достаточно сухой, отбензиненный газ, что позволяет применять метод Кремсера— Брауна для предварительного расчета процесса абсорбции. Поэтому, учитывая, что в настоящее время расчетные исследования процесса абсорбции и проектные расчеты, как правило, ведут с помощью точных методов на ЭВМ, в настоящей работе из всех приближенных методов расчета процесса абсорбции рассматри- [c.307]

    Рост потребностей в моторных и жидких топливс1Х вызвал тенденцию углубления извлечения газового бензина, пропана и бутанов и все большее вовлечение в переработку сравнительно тощих газов газовых и газоконденсатных месторождений. Началось совершенствование технологий переработки газа. Масляная абсорбция превратилась в низкотемпературную абсорбцию (Габс = —30- —50 °С) и в абсорбцию под высоким давлением (Равс = 14—16 МПа), адсорбция — в короткоцикловую адсорбцию. Началось освоение нового процесса — низкотемпературной конденсации. Извлечение пропана и бутанов [c.5]

    Скорость реакции окисления окиси азота при завергпешш процесса переработки, т. е. с уменьшением концентрации N0 в газе, резко снижается. По этой причине для достижения высокой степени переработки окислов азота в азотную кислоту требуются большие объемы абсорбционной аппаратуры. С целью пнтенсифи1 ации процесса окисления абсорбцию окислов азота проводят также под давлением 3—10 атм. Степень окисления NHg почти пе зависит от давления, ио производительность катализатора возрастает пропорционально давлению. [c.235]

    На НПЗ и НХЗ абсорбция применяется в блоках газоразделения для выделения целевых компонентов из смеси углеводородов. Эффективность абсорбции зависит от температуры и давления, при которых проводится процесс, свойств газа и абсорбента, скорости движения абсорбируемого газа, количества подаваемого абсорбента. Повышение давления или уменьшение температуры в абсорбере способствуют лучшему извлечению компонентов. Однако, поскольку работа при повышенном давлении и пониженных температурах связана с дополнительными эксплуатационными затратами, выбор параметров должен определяться на базе технико-экономических расчетов. Абсорбционное извлечение углеводородов из смесей с большим и средним количеством извлекаемых компонентов проводится при давлении не выше 1,6 МПа. Если газ поступает на переработку с более высоким давлением, то абсорбция проводится пр атом павлении. [c.111]

    Абсорбционные процессы широко распространены в химической технологии и являются основной технологической стадией ряда важнейших производств (например, абсорбция SO3 в производстве серной кислоты абсорбция НС1 с получением соляной кислоты абсорбция окислов азота водой в производстве азотной кислоты абсорбция NH , паров Hj, HjS и других компонентов из коксового газа абсорбция паров различных углеводородов из газов переработки нефти и т. п.). Кроме того, абсорбционные процессы являются основными процессами при санитарной очистке выпускаемых в атмосферу отходяи их газов от вредных примесей (например, очистка топочных газов от SOj очистка от фтористых соединений газов, выделяющихся в производстве минеральных удобрений, и т. д.). [c.434]

    Выбор способа переработки газа н, в частности, извлечения из него тяжелых углеводородов зависпт от состава и давления газа, заданной степени извлечения компонентов, масштаба производства и ряда других факторов и является задачей технико-.экономического порядка. Например, для переработки жирного газа, содержащего 50—200 г нм тяжелых углеводородов, применяют компрессию и масляную абсорбцию или процессы низкотемпературной ректифика-цпи. Для переработки тощих газов, содержащих 15—30 г/нм тяжелых углеводородов, применяют адсорбционные процессы. Из газов газоконденсатных месторожден1П1, добываемых обычно нри высоких давлениях, извлекать тяжелые углеводороды выгодно при помощи низкотемпературной сепарации. Научные основы этих процессов и технологическая их характеристика отражены в отдельных главах курса. [c.8]

    Процессы физической переработки природных газов, процессы кондепсацпи (сжижения), абсорбции, ректификации, адсорбции связаны с переходом вещества из одной фазы в другую, с явлением массообмена или диффузии и поэтому получили название массообжн-ных или диффузионных процессов. [c.40]

    Давление абсорбции 7,2 МПа. Процесс переработки осуществляется следующим образом вначале пз газа извлекается сероводород, затем на другой установке - СО2. Выделенная углекислота, содержащая 99 % СО2, около 1 % метана и менее 0,00001 % сероводорода, комиримируется до 13,8 МПа для закачки в иласт. На рис. 4.51 представлены схемы процесса выделения Н25 и СО2 из газа [152]. [c.342]

    Фельд и Буркгейзер разработали сложные процессы совместной абсорбции сероводорода и аммиака с последующей переработкой этих соединений на сульфат аммония и элементарную серу. Эти процессы, включая окисление сероводорода, рассматриваются в гл. девятой. Были предложены и в ряде случаев осуществлены в промышленном масштабе многочисленные видоизменения этих процессов очистки. Им посвящен весьма подробный обзор [15]. Несмотря на обширные исследования разработать удовлетворительный метод очистки газа, основанный на принципах, предложенных Фельдом, не удалось. В опубликованной работе [16] дается анализ проблемы очистки каменноугольных газов от сероводорода и аммиака в свете современных экономических условий. Показано, что совместное извлечение с последующей переработкой обоих компонентов на сульфат аммония является наименее целесообразным направлением процесса очистки газа. [c.73]

    Существует два типа жидкостных процессов очистки газов от HgS, основывающиеся соответственно на реакциях нейтрализации или окисления. Первый — абсорбция HgS щелочными растворами — сравнительно прост, но требует сложной последующей переработки HgS на серу кроме того, требуется достаточно полная регенерация ноглотительного раствора, и расход щелочи относительно большой. [c.222]

    В основе многих производств химической и смежных отра-, слей промышЛекности лежат процессы переработки газожидкостных систем. К таким процессам относятся абсорбция и десорбция газов, испарение и конденсация жидкостей, улавливание твердых и туманообразных примесей из газовых смесей, тетлообмен при неоосредственном соприкосновении жидкой и газовой фаз и другие процессы между жидкостью и газом. Интенсификация диффузионных и подобных им процессов связана с их проведением в интенсивных режимах развитой турбулентности при больших скоростях потоков газов и жидкостей. Турбулизация газожидкостной системы приводит к увеличению интенсивности массообменных аппаратов. В таких режимах работают рассматриваемые в настоящей книге пенные аппараты (ситчатые колонны) различных видов, аппараты с орошаемой взвешенной насадкой, аппараты с вертикальными контактными решетками и полые скрубберы с разбрызгиванием жидкости, позволяющие резко повысить производительность единицы объема оборудования. Именно Эти аппараты были предметом многолетних исследований авторов монографии, которые систематизировали и обобщили наряду с собственными данные и других советских и иностранных ученых. - <  [c.8]

    На основании зависимости р — ф можно сделать вывод, что для глубокого извлечения пропана абсорбция при давлениях свыше 7 МПа нецелесообразна. Но для переработки газов сайк-линг-процессом и при подготовке газов к транспортированию экономически целесообразным может оказаться абсорбционный процесс и при давлениях свыше 7 МПа. В данном случае при выборе давления необходимо сделать технико-экономический анализ с учетом конкретных условий (количество извлекаемых продуктов, расходы на дожатие при сайклинге и транспортирование, на регенерацию абсорбента и др.). [c.178]

    Технологический процесс получения фтористого кальция заключается в следующем 1-2%-ный раствор фтористоводородной кислоты, содержащий 0,1-0,2% кремнефтористоводородной кислоты, полученный при водной абсорбции отходйших фторсодержащих газов процесса переработки фосфатов, взаимодействует с меловой пульпой. [c.1]

    Коренные усовери1енствования внесены в производство серной кислоты контактным методом. Платиновые катализаторы заменены ванадиевыми. Освоены новые, более простые способы очистки обжигового газа н абсорбции серного ангидрида. Разрабо-ганы и освоены новые схемы производства серной кислоты из серы и сероводорода, процессы переработки отработанных кислот различных производств, использование дымовых газов и т. д. [c.13]

    Процесс переработки сернистого ангидрида башенным способом состоит из двух стадий 1) окисление сернисто1 о ангидрида и получение серной кислоты 2) абсорбция окислов азота из отходящих газов. Практически каждая из этих стадий включает ряд процессов и осуществляется в нескольких башнях. В схеме, изображенной на рис. 98 (см. стр. 237), процесс окисления сернистого ангидрида протекает в двух башнях, а поглощение окислов азота (вместе с их подготовкой)—в трех башнях. [c.270]


Смотреть страницы где упоминается термин Процессы переработки газа абсорбция: [c.6]    [c.453]   
Переработка нефтяных и природных газов (1981) -- [ c.122 , c.138 , c.195 , c.202 ]




ПОИСК





Смотрите так же термины и статьи:

Компрессионный способ переработки газа. Определение состава газа и жидкости после компрессии. Схема компрессионной установки Процесс масляной абсорбции

Процессы абсорбцией

Процессы переработки газа



© 2025 chem21.info Реклама на сайте