Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Эволюция биологическая, химическая

    Биохимические процессы и биологические молекулы являются результатом эволюционного развития. Биологической эволюции предшествовала химическая (гл. 17), далее они были связаны неразрывно. Виды и организмы характеризуются биохимической, молекулярной адаптацией к условиям среды. Изучая химию жизни, необходимо постоянно иметь в виду биологическое развитие. [c.24]


    XX век характеризуется интенсивным развитием большинства отраслей промышленности и стремительным ростом населения. В перспективе на начало XXI в. основные отрасли промышленности, наиболее загрязняющие окружающую среду (угольная, топливная, металлургическая п др.), будут развиваться еще более быстрыми темпами. Сформировавшиеся на протяжении многих миллионов лет эволюции биологически и химически чистые воздух, вода, массивы растительности во многих точках планеты с развитой промышленностью постепенно разрушаются. И если в ближайшее время меры по охране окружающей природы не будут существенно усилены, то примерно через 50 лет содержание оксидов железа в почве и воде удвоится, концентрация свинца в окружающей среде возрастет в 10 раз, ртути — в 100 раз, мышьяка — в 250 раз, а выбросы серы и азота в атмосферу возрастут в 2—3 раза. Чтобы представить количество нежелательных отходов, ниже приведены некоторые цифры, относящиеся к угольной промышленности. Мировая добыча угля в 80-е годы превысила 2000 млн. т в год, а количество твердых, [c.292]

    Устойчивость химического процесса связана с проблемой внешних и внутренних флюктуаций как в (квази) равновесных, так и в сильно неравновесных системах. Флюктуации могут при некоторых условиях нарушать состояние системы (равновесное, или стационарное, или искусственно заторможенное неравновесное) и приводить к образованию новых устойчивых структур. Этот процесс "самоорганизации" может определять характер и особенности временной эволюции физико-хими-ческих (а также биологических, экологических и других) систем. [c.230]

    Химическая эволюция привела к появлению биологической формы движения. Это произошло в результате развития химических систем и процессов, в них происходящих, а не только веществ. Реализация этого направления химической эволюции началась на самых ранних этапах геологической эволюции Земли в первичном бульоне , как назвал А. И. Опарин состав океана, где зарождалась, по-видимому, жизнь. [c.13]

    Проблемы, с которыми сталкивается применение вычислительных методов в химической кинетике, и уравнения, на которых оно основано, встречаются весьма часто и при анализе широкого круга задач эволюции физических, химических, биологических систем, экологических сообществ, популяций и т. п. Это позволяет надеяться, что книга будет представлять интерес не только для специалистов в области вычислительных методов в химической кинетике. [c.3]

    Опарин не считает, что открытые им капельки коацервата станут живыми организмами в лабораторных условиях. Он имеет в виду, что процесс коацервации мог явиться одной из стадий на длительном пути, связывающем химическую эволюцию с эволюцией биологической. [c.29]


    В соответствии с современными представлениями о развитии живой материи можно утверждать, что порфирины и родственные им структуры служили одними из ключевых соединений в химической эволюции биологически активных веществ. Так, экспериментальные исследования, проведенные американским ученым К. Фолсом, показали, что при воздействии лучистой энергии или электрического разряда на смесь первичных газов, составлявших древнюю атмосферу Земли, на первом этапе образуются небольшие органические молекулы. Среди них вьщеляются пирроль-ные гетероциклы, а затем обнаруживается полимерный материал, способ- [c.202]

    Меклер Л. Б. О происхождении живых клеток эволюция биологически значимых молекул — переход химической эволюции в биологическую. Новый подход к проблеме.— [П22], с. 360—372. [c.290]

    Установление обусловленности биологической эволюции физико-химическими свойствами матричных молекул, физико-хими-ческий анализ основных ее этапов отнюдь не означает сведения биологии к физике или химии. [c.10]

    Последние 15—20 лет характеризуются значительными успехами в области познания состава и строения углеводородов нефти, угля, сланцев, а также рассеянного органического вещества. В эти годы сложилась и получила широкое развитие новая научная дисциплина — органическая геохимия, основной задачей которой является изучение состава и химической эволюции органических молекул в земной коре. По сути дела эта отрасль науки является логическим продолжением хорошо известной химии природных биологических соединений. [c.3]

    Это соотношение было применено для изучения нелинейных химических систем, а также циклических эволюций около стационарного состояния при попытках термодинамического рассмотрения возникновения биологических систем .  [c.326]

    Можно ли, однако, говорить, что эти теории объясняли или хотя бы описывали тот самый фрагмент истории природы, который имеет право называться химической эволюцией и быть аналогом биологической эволюции, ставшей предметом учения Дарвина Вопрос этот очень важен, но отнюдь не прост. Ведь речь идет о критериях химической эволюции. Ответ на него, очевидно, может быть получен лишь посредством поиска каких-то параллелей между линиями формирования дарвиновских идей о биологической эволюции и биохимических представлений о химической эволюции. [c.186]

    Исследователи — как химики, так и биологи--называют поразительным тот факт, что из такого узкого круга отобранных природой органических веществ составлен труднообозримый мир животных и растений. Полагают, что, когда период химической подготовки — период интенсивных и разнообразных превращений — сменился периодом биологической эволюции, химическая эволюция словно застыла. Теперь находят массу доказательств тому, что аминокислотный состав гемоглобина самых низших позвоночных животных и человека практически один и тот же более нли менее одинаковыми остаются у разных видов растений состав ферментативных средств, состав веществ, накапливаемых впрок, и т. д. [c.196]

    Изложены теоретические основы современной химии квантовые законы, их применение к теории строения молекул, общие принципы термодинамики, проблемы равновесия н устойчивости диссипативных систем. Особое внимание уделено естественной эволюции химических систем от первичных форм организации к предбиологическим и биологическим формам. Поэтому сразу за рассмотрением свойств атомов и молекул, а также особенностей коллективов частиц (газов, жидкостей и твердых тел) следует описание закономерностей развития динамических организаций и конкретных путей химической эволюции на Земле, подготовившей ранние стадии биологического развития. [c.2]

    Практический опыт указывает на целесообразность такого изложения теоретической химии, в котором можно было бы проследить ход естественной эволюции химических систем от низших уровней организации — атомов — до самоорганизующихся систем предбиологической стадии. Совершающаяся в природе эволюция подчиняется не только химическим законам в узком смысле слова, и биологические закономерности нельзя сводить к химическим. Однако общий подход к процессам самоорганизации в точечных и распределенных системах уже принес успех и оказался полезным в химии, ферментологии, физике плазмы и даже в космологии. Значение общих законов не умаляется от того, что существуют и специфические для данного уровня организации закономерности некоторые из них, при внимательном исследовании, могут приобрести и общее значение. Поэтому целесообразно изучение особых признаков химических реакций, именно тех, которые все более отчетливо проявляются при переходе к биологии. [c.3]

    Для исследования путей эволюции от простых соединений до биологических систем необходимо знание свойств не только отдельных атомов и молекул, но и химических систем в целом. Некоторую аналогию этой проблеме можно найти в представлениях квантовой механики, где реальное движение неотделимо от среды и нельзя мысленно изолировать точку, лишив ее связей со средой. Реальный объект увлекает за собой пространственно-временные отношения, и движение точки приходится описывать волновой функцией, зависящей от времени. [c.5]


    Замечание Ф. Энгельса о связи единого со многим , относящееся к системе Менделеева, можно распространить как на элементарные частицы, так и на высшие формы организации материи— химические и биологические. Химики все чаще обращаются к изучению химических систем (Ю. А. Жданов) и возможным направлениям их эволюции. Понимание общих принципов химической эволюции помогло бы стереть границы, отделяющие теоретическую химию от теоретической биологии. [c.5]

    В поисках того признака, который, проявляясь на всех стадиях эволюции химических систем, приобретает доминирующее значение у биологических систем, необходимо обратить внимание на дискретность отношений между системой и средой. Роль принципа дискретности, проявившаяся в успехах атомно-молекулярной теории, периодическом законе, структурной теории, стала еще более значительной в квантовой физике.  [c.5]

    Очевидно, что химическая эволюция в природе шла по двум путям. Один из них привел к возникновению прочных соединений (алюмосиликатов, сульфидов, оксидов и т. п.), обладающих кристаллической структурой, — они входят в состав магматических пород и в тех условиях, в которых они находятся, состояние их близко к равновесному. Другой путь завершился переходом к биологическим системам. В потоках солнечного излучения, интенсивность которого периодически изменялась, образовались разнообразные активные частицы — радикалы, давшие начало синтезу богатых энергией и термодинамически неустойчивых соединений. Среди них были аминокислоты и другие соединения, содержавшие азот и фосфор этот предбиологический фонд и стал тем материальным резервом, из которого были почерпнуты вещества, необходимые для создания динамических диссипативных организаций. [c.6]

    Это тем более удивительно, что мир неживых систем и царство жизни связаны с постоянным обменом и один и тот же атом имеет шансы много раз стать составной частью и организма, и минерала, и земной атмосферы (В. И. Вернадский). Несомненно, однако, что устойчивость динамических организаций увеличивалась по мере их усложнения. Способность выдерживать физические и химические атаки внешней среды (например, повышение давления, колебания температуры, кислотности среды и т. п.) у живых существ выражена более отчетливо, чем у относительно просто построенных систем неживой природы. Такие процессы, как растворение, выветривание, эрозия, существенно изменяющие неживые системы, не оказывают разрушительного действия на живую материю во всем разнообразии ее форм. Химический состав и важнейшие последовательности реакций в живых системах мало изменялись на всем протяжении колоссального пути биологической эволюции. Это значит, что химическая эволюция в одних определенных условиях может завершиться примитивной стадией кристаллизации, а в других дать начало синтезу усложняющихся организаций, в которых механизмы, обеспечивающие устойчивость, строятся из одних и тех же химических фрагментов (белков, ферментов, липидов и др.), но выполняют все более тонкие и специфические функции. [c.7]

    Кодовые механизмы, действующие в биологических системах, существуют за счет потоков энергии, т. е. разностей химических потенциалов, однако эффективность действия кодовых сигналов по мере эволюции все в меньшей степени зависит от их энергетического эквивалента. Кодовые сигналы обладают двумя важнейшими [c.342]

    Шноль С. Э. Физико-химические факторы биологической эволюции. — М. Наука, 1979. [c.344]

    Возникла ли асимметрия на ранней стадии химической эволюции, на ее поздней стадии или она развилась уже в процессе первичной биологической эволюции  [c.660]

    Это значит, что Вселенная эволюционирует, развивается. Для нас важен этап ее химической эволюции возникновение и развитие химической формы движения материи-, возникновение ее из физической и развитие до биологических форм. [c.4]

    Можно предположить, что первоначальная масса образовавшейся в нашем участке Галактики звезды превышала критическую (равную 1,44 массы Солнца), она оказалась неустойчивой. Под действием гравитационного притяжения протозвезда сжималась, ее температура повышалась, обеспечивая первые этапы ядерного синтеза. Выделяющаяся при этом энергия оказалась слишком велика, и поэтому через некоторое время происходил взрыв в виде Сверхновой, во время которого образовывались ядра самых тяжелых элементов масса звезды уменьшалась за счет выброса вещества. Весь этот процесс мог повторяться неоднократно до tex пор, пока масса центральной массивной звезды не опустилась ниже критического предела. Такая система должна иметь время жизни порядка 5 млрд лет, что соответствует возрасту Солнца и обеспечивает интервал времени, достаточный для химической, геологической и биологической эволюции, достигших современного уровня. [c.9]

    В настоящее время отсутствует общепринятая теория химической эволюции, приводящей к возникновению биологической формы движения материи — жизни. [c.15]

    Таким образом, химическая эволюция завершается появлением биологической формы движения материи — жизни. [c.17]

    На фиг. 22 приведена вероятная абсолютная хронология жизни на Земле в докембрийский период, составленная на основании данных, обсуж,давшихся в пастоян1,ей главе. В следующей главе мы рассмотрим данные, касающиеся химических и физических условий, на фоне которых могли протекать ранние стадии до-биологической химической эволюции. [c.100]

    В начале второй половины нашего столетия стала очевидной невозможность описания возникновения в макроскопических системах когерентных структур на основе известных законов, применимых, подобно закону возрастания энтропии, к множеству частиц, не говоря уже о невозможности понимания этого явления. Классическая термодинамика, как и другие теории "среднего поля", оказались неподготовленными для выяснения причин спонтанного образования порядка из беспорядка за счет большей хаотизации окружающей среды. Возникшая в середине XX в. ситуация в принципе аналогична той, которая имела место в первой половине XIX в. когда выяснилась несостоятельность классической физики в описант поведения макроскопических систем. Теории бифуркаций диссипативных структур, а в общем плане -нелинейная термодинамика неравновесных процессов, по существу, представляют собой отход от унифицированных моделей теорий "среднего поля" и признание невозможности непротиворечивого объяснения эволюции (физической, химической и биологической) в рамках исключительно макроскопического описания, иными словами, является отказом от чисто вероятностных представлений классической и линейной термодинамики. [c.457]

    В вычислительных системах, основанных на использовании молекулярных систем и их ансамблей, находящихся в стационарных, далеких от равновесия состояниях, которые могут существовать только за счет обмена энергией (массой) с окружающей средой, возникают и распространяются автоволны (волны возбуждения в активных средах), сохраняющие свои характеристики постоянными за счет распределенного в среде источника энергии. Автоволновые процессы описываются математическим аппаратом, использующимся для анализа сугубо нелинейных задач, к которому сводится целый ряд практически важных проблем — образование кристаллических структур, кинетика химических и биотехнологических процессов, биологический морфогенез, эволюция биологических популяций и т. д. При исследовании этого класса задач на традиционных ЭВМ приходится прибегать к настолько трудоемким численным методам, что пока нельзя надеяться на возможность решения реальных задач, встречающихся на практике, даже с учетом перспективного роста быстродействия современных цифровых ЭВМ. Физической реализацией био-вычислительного устройства являются квазидвумерные кристаллизованные пленки белков и ферментов, которые в определенных условиях ведут себя как актив- [c.43]

    Эволюция—это процесс, внутренне присущий строению Вселенной. Она фактически начинается с образования элементарных частиц на заре превращения энергии в вещество. Эволюция началась с рождением Вселенной. И это не какой-то расплывчатый процесс, поскольку у элементарных частиц уже выявлены определенные предки и особые правила эволюции. Позднее химические элементы периодической таблицы также претерпевак5т упорядоченную и четко выраженную эволюцию. Еще позднее происходит эволюция минералов. Эти три отдельные эволюции (гл. 4, 6 и 8) предшествуют биологической эво,-люции. [c.37]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Химическая эволюция началась примерно 4,6 0,1 млрд. лет тому назад, и лищь этот процесс, не считая биологической эволюции, занял примерно 1,5 млрд. лет [42]. Нас особенно интересует тот период химической эволюции, во время которого образовались сложные органические молекулы, превратившиеся затем в живую материю. [c.181]

    Весьма вероятно, [301], что в результате химической эволюции тиамнн-РР должен был структурно приспособиться к своей биологической роли. Наиример, алкилированное шиффово основание [c.467]

    Феноменологическая термодинамика необратимых процессов применима главным образом к анализу химических реакций или таких изменений в открытых системах, для которых можно использовать понятия макроскопической скорости реакции и химического потенциала. При этом вычисление диссипативных функций основано на уравнениях химической кинетики, которые позволяют производить совместный кинетико-термодинамический анализ динамической эволюции реакционноспособной системы через вычисление скоростей и движущих сил процессов. Однако большинство из сушествующих математических моделей многих каталитических, технологических и особенно биологических систем с использованием дифференциальных уравнений могут отразить лишь отдельные стороны исследуемых процессов, но не описывают сложные реакции в совокупности. Особенно это относится к физико-химическим явлениям, лежащим в основе важнейших биологических процессов роста, развития, адаптации к внешним воздействиям и эволюции живых структур. [c.394]

    В предыдущей главе описаны кинетические законы, которым следуют химические реакции, причем весь процесс рассматривался только на молекулярном уровне. В то же время в реальных условиях эволюция химических систем привела к последовательному образованию множества сложных динамических структур, подготовивщих переход химической эволюции в биологическую. Поэтому проблема возникновения микро- и макроорганизаций в неравновесной системе, получающей от внешней среды вещества и энергию (например, развивающейся в изотермических условиях), исключительно важна. Возможно ли возникновение упорядоченности— временной и пространственной — в исходно однородной системе, в которой протекают химические реакции Трудность решения этой задачи обусловлена тем, что нет столь надежного признака устойчивости неравновесных систем, какими для равновесных является экстремум соответствующего термодинамического потенциала. Поэтому приходится прибегать к изучению кинетики процессов и в ней искать условия возникновения упорядоченности. В наиболее общей форме эта задача решена Тьюрингом (1952), показавшим, что в результате развития химической реакции при постоянной температуре и диффузионном перемешивании концентрации промежуточных продуктов реакции могут распределяться в пространстве неравномерно, образуя зоны различной концентрации. [c.325]

    Опыт показывает, что осуществимость того или иного процесса может существенно зависеть как от временной последовательности воздействий (например, от частоты), так и от чисто пространственных отношений. В последнем случае особую роль играют свойства симметрии взаимодействующих систем и дискретность собственных значений оператора симметрии. Дискретность условий, разрешающих данный процесс и исключающих другие, является основой развития химических систем и отчетлво проявляется в механизмах метаболизма и биологической эволюции. [c.333]

    B. В. Зеленкин, Дж. Милсум, Э. С. Крендел и др.) показало, что навязывание или усвоение ритмов сыграло важную роль в процессе эволюции. Установлено, что усвоенный биологической системой внешний ритм в конечном счете может стать свойством самой системы и действовать в ней независимо от обстановки. В этом случае, несомненно, внешнее воздействие сыграло роль фактора, формирующего биохимические (т. е. по существу химические) структуры. Однако ритмы, фиксированные в оперативной памяти человека, способны к быстрым перестройкам при соответствующем изменении ритмов внешней среды. Так, по данным Б. А. Карпова с сотр., колебательное ритмическое движение светящейся точки вызывает ритмическое движение глаз наблюдателя, причем глаз сначала подстраивается к движению источника света, а затем приобретает устойчивый ритм, сохраняющийся даже после выключения света. Глаз, по мнению этих исследователей, может усваивать даже полигармонические сигналы. Явления навязывания кода , наблюдаются и для случаев пространственного кодирования. Навязывание означает, например, конформационное изменение макромолекулы, которое происходит под влиянием более жесткой структуры присоединяемой низкомолекулярной частицы. Конформационные изменения в белках описаны ниже (часть IV, гл. 4). Эти процессы имеют большое значение в ферментативном катализе, где жесткой структурой часто обладают молекулы субстратов. [c.339]

    Описаны высшие формы химических организаций — биологические системы. Все биологические системы являются динамическими и находятся в состоянии постоянного обмена со средой условия их устойчивости нельзя формулировать, пользуясь только законами термодинамики биологическая устойчивость зависит от природы системы, от уровня развития кодовых отношений между составными частями системы и системой и средой. Немного известно нам о том периоде эволюции, когда предбиологический этап сменился биологическим. Поэтому целесообразно описать свойства сравнительно несложных соединений, существование которых на добиологической Земле не вызывает сомнений, и обсудить вопросы о вероятных реакциях, протекавших в атмосфере, гидросфере и литосфере. Некоторые модельные опыты в сопоставлении с данными геохимии пвзволяют сделать правдоподобные заключения об исторических этапах предбиологической эволюции. [c.345]

    Следует подчеркнуть, что в существовании и саморазвитии каталитических систем нет ничего живого. Свойство же редупликации, приобретаемое каталитической системой на завершающем этапе химической эволюции, становится первым специфическим биологическим свойством живых систем. Все же другие свойства, характерные не только для живого, но и для самораз-вивающихся каталитических систем (в частности, обмен веществом и энергией с окружающей средой, рост и т. п.), постепенно развиваются и формируются в ходе химической эволюции и переходят в готовом виде к живым системам как первичные, фундаментальные (но не специфические только для живого) свойства. [c.17]

    Шестой период развития химии — современный. Этот период характеризуется широким использованием квантовой (волновой) механики для иитерпретаци н все чаще для расчета химических параметров веществ и систем веществ доведением исследования химических процессов (химической формы движения материи) до их перехода в предбиологические (матричные) и биологические разработкой теорий химической эволюции утверждаются факт отсутствия химических индивидов в чистом виде и необходимость описания веществ как составных частей систем веществ признается неправомерность игнорирования качественных различий мик-ро- и макроформ вещества, характерного для классического атомно-молекулярного учения (в качестве примера можно назвать пирофорность порошков металлов и некоторых других веществ (сахара, муки), различную растворимость крупных и мелких кристаллов и т. д.). [c.27]

    В книге изложены основы органической химии лекарственных нешеств ко торые нашли применение в практической медицине в 20-м веке Отражен.I эволюция химии лекарственных веществ, рассмотрена современная стратегия синтеза фармакологически ценных соединений, оспещена методология поиск.1 среди них э( )фективных лекарственных препаратов Основной материал книги - синтезы известных лекарственных веществ - систематизирован по классам и структурным группам химических соединений Приведены современные представления о механизмах лекарственного дейстпия биологически активных веществ [c.2]


Библиография для Эволюция биологическая, химическая: [c.291]   
Смотреть страницы где упоминается термин Эволюция биологическая, химическая: [c.28]    [c.221]    [c.225]    [c.345]    [c.168]    [c.396]   
Основы биохимии Т 1,2,3 (1985) -- [ c.72 , c.73 , c.74 , c.155 ]




ПОИСК







© 2025 chem21.info Реклама на сайте