Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ профиль элюирования

    Аналогичным образом, но при помощи интегрального метода можно рассчитать содержание вещества по профилю элюирования, полученному на аминокислотном анализаторе. Площадь пика делят вертикальными линиями на участки, соответствующие смещению ленты за время сбора одной фракции. Так, при скорости подачи элюента 30 мл/ч, скорости смещения ленты самописца 75 мм/ч и объеме фракций 1 мл расстояние между двумя вертикальными прямыми составляет 2,5 мм. Величину поглощения определяют в точке пересечения кривой элюирования с вертикальной линией. Однако эти данные не пересчитывают на лейцин, поскольку в условиях анализа на аминокислотном анализаторе построение стандартной лейциновой линии является сложной задачей. Поэтому найденные величины поглощения суммируют, вычитают среднее значение фона, умноженное на число фракций, и в итоге получают число, соответствующее площади данного пика. При анализе стандартной смеси аминокислот определяют так называемый цветовой показатель (константу С ), соответствующий каждой аминокислоте (см. [c.354]


Рис. 5.38. Пример применения метода анализа основного компонента для получения индивидуальных спектров и профилей элюирования плохо разрешенных белков [92] (с разрешения изд-ва). Рис. 5.38. <a href="/info/1499867">Пример применения метода</a> <a href="/info/1474154">анализа основного компонента</a> для <a href="/info/262111">получения индивидуальных</a> спектров и профилей элюирования плохо разрешенных белков [92] (с разрешения изд-ва).
    Профиль, показанный на рис. 17, был определен благодаря анализу, проводившемуся с помощью газовой хроматографии. Исследовалось содержание растворителя на полосках фольги, покрытых слоем силикагеля. Элюирование с таких тонкослойных пластинок проводили в ненасыщенных сэндвич-камерах без предварительного насыщения сухого слоя, если не считать нескольких миллиметров в области видимого фронта (такая область отчетливо обозначена на рисунке). При пользовании данными пластинками, изготовленными с употреблением фольги, не наблюдаются различия профилей градиента при элюировании в горизонтальной и вертикальной плоскостях. Когда элюирование проводили с двухчасовой передержкой, кривизна, обусловленная фронтальным градиентом, устранялась, слой сорбента оказывался равномерно насыщенным и отмечалось общее увеличение концентрации растворителя в слое на 6%. Последствием такой выдержки пластинки являлось то, что (если даже не учитывать повышенное насыщение всей поверхности) большее количество растворителя (в 1.8 раза) проникало в слой для сглаживания фронтального градиента (4й=1-08 см. уравнение 41а). [c.69]

    При сочетании масс-спектрометра и газового хроматографа в ходе анализа приходится иметь дело с различными быстрыми изменениями парциального давления в ионном источнике в соответствии с меняющимся профилем газохроматографического элюирования. Парциальное давление во время измерения масс-спектра должно по возможности поддерживаться постоянным во избежание помех, влияющих на интенсивности пиков и могущих привести к ошибочной интерпретации результатов измерений. Решением проблемы может быть регистрация спектра за очень короткий промежуток времени (в режиме быстрого сканирования), поскольку колебания парциального давления в шкале времени пролета ионов сравнительно невелики и не сказываются существенным образом на качестве спектра. Для быстрого сканирования, однако, необходимы быстродействующие безынерционные детектирующие устройства с высокой чувствительностью. В значительной мере этим требованиям удовлетворяют вторичные электронные умножители. Вторичный электронный умножитель выполняет функцию предусилителя. Ионы, проходящие через входную щель детектирующего устройства, попадают вначале на первый конверсионный динод, при соударении с которым каждый ион выбивает несколько вторичных электронов. Эти электроны под действием ускоряющего напряжения между динодами направляются на второй динод, из которого каждый падающий электрон вновь выбивает некоторое число вторичных электронов, и этот процесс повторяется на следующем диноде. С последнего динода на коллектор падает настоящий электронный ток, по своей мощности многократно превосходящий первоначальный ионный ток, поступающий на конверсионные диноды. Коэффициенты усиления во вторичных электронных умножителях с числом динодов от 16 до 20 достигают значений 10 —10 . Другим существенным преимуществом этого метода предварительного усиления является возможность обеспечения исключительно малых значений постоянных времени при очень низком уровне шумов. В качестве одного из недостатков можно указать на некоторую зависимость коэффициента усиления от массы ионов (дискриминация по массам).  [c.296]


    В связи с кинетической природой хроматографического процесса результаты, полученные рассмотренными методами, несколько различаются. Согласно [67], данные фронтальных газохроматографических методов более точны, чем получаемые методами элюирования. На рис. ХП.4 представлены формы профиля при фронтальном анализе и при элюировании на плато постоянной концентрации. [c.344]

    Вытекающий из колонки буферный раствор собирают в пробирки порциями по 1—3 мл. Регистрацию объема элюата, прошедшего через колонку, начинают с момента нанесения образца на колонку. Содержание белка во фракциях определяют спектрофотометрически при 280 нм. Оптическую плотность растворов, содержащих рибонуклеазу, определяют при 230 нм, голубой декстран — при 650 нм, цитохром с — при 412 нм. После окончания анализа колонку промывают несколькими объемами буферного раствора. Строят профиль элюирования отдельных белковых фракций. Для этого вычерчивают график, на горизонтальной оси которого откладывают номера пробирок (фракций) или объем прошедшей через колонку жидкости, а на вертикальной оси — величины оптической плотности фракций. [c.108]

    Такая система позволяет получить более четкое разделение. При нанесении образца (в объеме 40 л) элюат, не содержащий аминокислот, сливают в трап. После впитывания всех 40 л отсоединяют первую колонку и оставшиеся три промывают 0,15 н. водным раствором аммиака со скоростью 20 мл/мин, собирая элюат по фракциям объемом 250 мл. Анализ ведут методом бумажной хроматографии. Первую колонку, содержащую основные аминокислоты, соединяют с двумя небольшими колонками (2,5x20 см и 1,7x13,6 см), также заполненными полистиролом. Вытеснение ведут 0,075 н. раствором едкого натрия со скоростью подачи 6 мл/мин (объем фракций равен 250 мл). Профиль элюирования строят по данным хроматографии на бумаге. Объединяют фракции, характеризующиеся наиболее простым составом и максимальным содержанием аминокислот. Эти уже обогащенные смеси вновь фракционируют на сульфокатионите (Zeo-Karb-215) в различных условиях или на дауэксе-2 до получения чистых аминокислот. Не представляющие интереса промежуточные фракции отбрасывают. Условия рехроматографии выбирают с учетом состава смеси. Выход аминокислот составляет около 50% от веса исходного белка. В качестве источника аминокислот используют белковые гидролизаты например, яичного альбумина) или гидролизаты микроорганизмов (например, дрожжей) и даже биологические экстракты [90]. Важно лишь, чтобы смесь не содержала большого количества полисахаридов. [c.356]

    Другой подход к анализу процессов, протекаюш,их в условиях линейной неидеальной хроматографии, был развит еще в первых работах нобелевских лауреатов Мартина и Синджа [71], предложивших в 1941 г. тарелочную теорию жидкостной распределительной хроматографии, распространенную затем на газо-жидкостную хроматографию Джеймсом и Мартином [72]. При этом слой неподвижной фазы рассматривается как совокупность последовательно соединенных элементарных ступеней ( тарелок ),на каждой из которых устанавливается межфазовое равновесие. Хотя теория тарелок и объясняет, почему профиль хроматографической зоны в случае линейной изотермы распределения для достаточно больших времен элюирования приближается к форме гауссовской кривой, однако она не позволяет непосредственно связать размывание с параметрами хроматографического опыта. Дальнейшее свое развитие тарелочная теория получила за рубежом в работах Майера [73], Глюкауфа [74—75] и Винка [76] и в исследованиях советских авторов [77—80], однако, вследствие указанного выше формального характера, она все больше уступает свои позиции теории скоростей , существенный вклад в которую сделан Жуховицким с сотрудниками [81—83] и Томасом [84], изучавшими процесс динамики сорбции вещества слоем зерпеного материала из потока инертного газа. В работе [82] приведено полное решение для процесса, лимитируемого внешнедиффузиоиной кинетикой при линейной изотерме адсорбции. Для изотермы Лэнгмюра задачу удалось решить только численно [67]. Отметим, что внутридиффузионные задачи в динамике сорбции еще в середине и конце тридцатых годов исследовались Викке [85] и Дам-коллером [86], причем было показано, что предложенный механизм хорошо описывает опыты при низких давлениях, при повышенном же давлении процесс, видимо, начинает контролироваться внешней диффузией. [c.88]


Смотреть страницы где упоминается термин Анализ профиль элюирования: [c.342]    [c.224]    [c.235]    [c.158]    [c.122]    [c.122]    [c.122]   
Жидкостная колоночная хроматография том 3 (1978) -- [ c.2 , c.314 , c.342 , c.348 ]




ПОИСК





Смотрите так же термины и статьи:

Профили шин

Элюирование



© 2025 chem21.info Реклама на сайте