Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Испускание, интенсивность

    Флуориметрический метод анализа основан на возбуждении электронных спектров испускания молекул определяемого вещества при внешнем УФ-облучении и измерении интенсивности нх фотолюминесценции. Для возникновения явления люминесценции молекулы вещества необходимо перевести из основного состояния в возбужденное с длительностью его существования, достаточной для осуществления излучательного электронного перехода из возбужденного состояния в основное. Это возможно для молекул с относительно устойчивым возбужденным состоянием. [c.94]


    Для расшифровки состава природных органических соединений нефти и нефтепродуктов и характеристики их свойств применяются оптические методы. Сюда относятся инфракрасная и ультрафиолетовая спектрометрия, метод комбинационного рассеяния света, определения показателя преломления и оптической активности. Вещество, через которое проходит излучение, поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. Каждый ион, атом, молекула дают характерные частоты в спектре поглощения, спектре испускания и спектре комбинационного рассеяния. Задачей спектрального анализа является определение этих характеристических частот, зная которые, можно определить качественный состав углеводородной смеси. Для этого существуют таблицы характеристических частот индивидуальных углеводородов. Для количественного анализа еще необходима оценка интенсивности излучения. [c.228]

    К тушению триплетных состояний можно отнести триплет — триплетный перенос энергии, который наблюдается, если в системе находятся донор и акцептор энергии. Причем перенос энергии будет интенсивным, если энергия донора больше энергии акцептора. Кроме того, поскольку перенос энергии всегда изоэнергетический, то необходимым условием является перекрывание спектров испускания (фосфоресценции) донора и поглощения акцептора. Перенос энергии между триплетной молекулой и невозбужденной синглетной молекулой А с переводом ее в триплетное состояние А сопровождается сохранением суммарного спина системы по схеме [c.168]

    Результаты Льюиса и Уайта следующие обнаружена полоса (0,0) с кантами (X =3236,6), (X =3240,7) и 2 (X =3279,1). Канты и Ql в спектрах поглощения интенсивнее, чем кант ( 2> но в спектрах испускания интенсивности кантов п примерно одинаковы, а кант несколько затемняется ветвью Лх. [c.280]

    Переход -> приводит к образованию континуума, простирающегося от шумановской области (далекий ультрафиолет) до 3500 А. Как мы уже видели (рис. 3-20), нижнее состояние является состоянием отталкивания при всех г. Следовательно, переход с верхнего уровня на уровень приводит к испусканию света и образованию двух 15-атомов водорода. Состояние имеет энергию электронного возбуждения в виде неквантованной кинетической энергии, которая способствует испусканию интенсивного сплошного спектра это испускание часто используется в источниках света. [c.129]


    В 1905 г. Альберт Эйнштейн (1879-1955) привел еще один пример квантования энергии, когда он сумел успешно объяснить фотоэлектрический эффект. Так называется явление выбивания электронов из поверхности металлов под действием света. (Фотоэлектрический эффект используется в фотоэлементах, которыми оборудованы хорошо известные всем автоматы-пропускники в метро, срабатывающие в результате изменения фототока.) Важной особенностью фотоэлектрического эффекта является то, что для каждого металла существует минимальная частота света, ниже которой не происходит испускания электронов независимо от того, насколько велика интенсивность пучка света. Классическая физика была не в состоянии объяснить, почему самые интенсивные пучки красного света не могут выбивать электроны из некоторых металлов, хотя это достигается очень слабыми пучками синего света. [c.338]

    Наряду с обменом колебательной, вращательной в поступательной эпергии при столкновениях молекул, находящихся в основном электронном состоянии, значительный интерес представляет обмен энергии электронновозбужденных молекул. Практически единственным экспериментальным методом определения вероятности или констант скорости этих процессов является оптический метод, основанный на измерениях интенсивности электронных спектров испускания (флуоресценции). [c.100]

    Определение понятия горение . Понятие горения не может быть определено однозначно, так как не существует точных границ для условий протекания процессов, которые можно характеризовать как горение. Мы будем пользоваться следующим определением горением называется самоускоряющееся быстрое химическое превращение, сопровождающееся интенсивным тепловыделением и испусканием света. [c.5]

    Кинетика фосфоресценции. Фосфоресценцию обычно изучают в твердой фазе, поскольку константы скорости испускания фосфоресценции, как правило, малы (10- —10 с- ) и неизбежные примеси в жидких растворах сильно тушат фосфоресценцию. Исключением являются такие соединения, как диацетил и дибензоил, для которых достаточно интенсивная фосфоресценция обнаруживается и в жидких растворах. Для других соединений наблюдать фосфоресценцию в жидких растворах удается лишь с использованием метода счета фотонов. Квантовый выход фосфоресценции равен [c.98]

    Известно, что при прохождении через вещество лучей от источника излучения. это вещество поглощает лучи только определенной длины волны (частоты), и по закону Кирхгофа само вещество излучает только те лучи, которые оно в данных условиях поглощает. В результате этого калчдая молекула, каждый атом или ион дают характерные частоты в спектре поглощения, спектре испускания или спектре комбинационного рассеяния. Спектр — это распределение энергии излучения, испускаемого (поглощаемого) телом по частотам или длинам волн. Задача качественного спектрального анализа заключается в обнаружении этих харак-тсрнстичоских частот и сравнении их с частотами индивидуальных веществ. Для количественного анализа требуется еще оценка интенсивности излучения. [c.90]

    Учет аппаратной функции. Е сли время затухания люминесценции и время возбуждающей вспышки сравнимы между собой, наблюдаемая кинетика испускания отличается от характеристической функции f(t) —истинного закона затухания (при возбуждении бесконечно коротким импульсом света). Наблюдаемую интенсивность испускания f(f) в момент времени можно представить в виде интеграла dF (t) = Е (х) f t—x)dx—элементов интенсивности испускания частиц, возбужденных в момент х (где Е х) —интенсивность возбуждающего импульса света), тогда [c.108]

    Существуют и другие методы анализа, например биологические. К последним можно отнести метод определения содержания сероводорода в воздухе по изменению интенсивности свечения некоторых бактерий, а также метод анализа некоторых веществ, основанный на наблюдении за движением мелких червей, гибнущих после добавления известной дозы этих веществ. Физико-химические и физические методы, главк-Ум образом в зарубежной литературе, называют инструментальными, так как они обычно требуют применения приборов, измерительных инструментов. На первый взгляд, разные методы химического анализа не имеют между собой ничего общего, настолько различны их приемы, аппаратура и применение. На самом же деле принцип определения химического состава любыми методами один и тот же состав вещества определяется по его свойствам. Дело в том, что каждое вещество, отличающееся от других веществ своим составом и строением, обладает некоторыми индивидуальными, только ему одному присущими свойствами. Например, спектры испускания, поглощения и отражения веществом излучений имеют характерный для каждого вещества вид. По растворимости и форме кристаллов также можно узнать данное вещество. [c.9]

    Помимо величины длины волны спектральная линия имеет еще одну очень важную для спектрального анализа характеристику — интенсивность. Интенсивность спектра испускания связана с энергией, испускаемой возбужденными атомами (молекулами) в источниках излучения, а спектров поглощения — с энергией, поглощаемой атомами (молекулами) вещества. Интенсивности спектров зависят от вероятностей переходов и от заселенностей уровней, начальных для этих переходов. [c.7]


    Для спектров испускания величину интенсивности, (/) спектральной линии можно представить в виде [c.7]

    В атомно-абсорбционном методе анализа в качестве источников излучения чаще всего применяют специальные газоразрядные лампы с полым катодом. Конструкция ламп такова, что в спектре испускания интенсивно проявляются спектральные линии атомов, входящих в состав материала катода, или веществ, специально помещенных в полость катода. Изменяя материал катода или состав помещаемого в полость катода вещества, можно получать спекхры испускания различных атомов. Обычно каждая лампа для атомно-абсорбционного анализа дает спектр испускания атомов какого-либо одного элемента (табл. 3). Поэтому для определения нескольких элементов в пробе необходимо иметь набор ламп на различные элементы, поскольку лампы, позволяющие определять сразу несколько элементов, пока не нашли широкого применения в практике атомно-абсорбционного анализа. Таким образом, несколько элементов определяют при последовательной замене ламп, используя их поочередно в качестве источников излучения. [c.36]

    Величина поглощения определяется как разность двух измерений интенсивности выбранной спектральной линии первого — при прохождении излучения через среду, не содержащую определяемых атомов, второго — через среду, содержащую определяемые атомы. На величину измеряемого сигнала молсет влиять интенсивность испускания атомами, находящимися в возбужденном состоянии в пламени. Для устранения этого влияния интенсивность излучения лампы с полым катодом модулируют с определенной частотой, а в качестве усилителя применяют устройства, усиливающие сигналы, поступающие только с частотой модуляции. [c.36]

    В видимой части спектра испускания лития и натрия наибольшую интенсивность имеют линии с длиной волны 670,8 и [c.109]

    Эмиссионный спектральный анализ основан на получении и изучении спектров испускания (эмиссионных спектров). По положению и относительной интенсивности отдельных линий в этих спектрах проводят качественный спектральный анализ. Сравнивая интенсивность специально выбранных спектральных линий в спектре пробы с интенсивностью тех же линий в спектрах эталонов, определяют содержание элемента, выполняя, таким образом, количественный спектральный анализ. [c.189]

    Может происходить и так называемая химическая поляризация ядер и электронов. Дело в том, что неравновесная заселенность зеемановских уровней может создаваться и при элементарных химических актах в образующихся частицах или в тех состояниях, из которых эти частицы возникают (триплетные состояния, радикальные пары и т. п.). В таких ситуациях будут наблюдаться не обычные спектры магнитного резонанса (спектры поглощения), а либо с аномальной интенсивностью поглощения, либо даже спектры испускания. [c.83]

    Совокупность радиационных переходов с нижележащих энергетических уровней молекулы на выщеле-жащие (в частности, с основного на возбужденные) образует спектр поглощения, а совокупность переходов с вышележащих уровней на нижележащие — спектр испускания. Интенсивность спектров поглощения и испускания определяется вероятностью соответствующих переходов. Согласно Эйнштейну, вероятность перехода с поглощением (Оу) между - и ]- уровнями записывается в виде [c.219]

    В настоящее время многие лаборатории располагают стандартной аппаратурой для качественного и количественного анализа большинства элементов, за исключением самых легких, с помощью рентгеновских спектров испускания. Интенсивные атомные линии получают либо при электронном возбуждении, либо за счет вторичного возбуждения (флуоресценция, возбуладаемая первичным рентгеновским излучением). Как правило, разрешающая способность подобной аппаратуры недостаточно высока для того, чтобы обнаружить небольшие смещения эмиссионных линий, связанные с изменением химического состояния элемента. [c.129]

    Наблюдаются также соответствующие изменения в поляризации спектра поглощения и спектр ах, испускания. Интенсивная зеленая флуоресценция, характерная для мономерного Акридинового оранжевого (XXHI) в случае димера сильно гасится и сдвигается в красную область (см. рис. 15). В то же время псевдоизоцианин (IV М==СН), не флуоресцирующий в мономерной форме при [c.1860]

    Г1 [КОг-] , где т] — вероятность испускания кванта света в расчете на 1 акт К02-+К0г-. При введении ингибитора в окисляющийся углеводород скорость реакций КОг--гКОг- уменьщается, иоэтому интенсивность хемилюминесценции снижается. Зависимость I от [1пН], когда практически все цепи обрывает ингибитор, описывается формулой [c.106]

    Флуоресценция и фосфоресценция. Флуоресценция — это излу-чательный переход с нулевого уровня состояния 5] на любой колебательный уровень основного состояния. По принципу Франка — Кондона наиболее интенсивная полоса испускания соответствует вертикальной линии, проведенной из середины отрезка в точку В (см. рис. 27), а другие, менее интенсивные —переходам на колебательные уровни основного состояния. Форма спектра испускания будет зависеть от относительного расположения минимумов верхней п иижней кривых. Для большинства веществ кривые не очень сильно сдвинуты относительно друг друга по оси абсцисс и справа от вертикали кривая основного состояния идет круче, чем слева. Поэтому в направлении длинных волн интенсивность флуоресценции будет спадать более полого, чем в направлении коротких волн. Более крутой спад в направлении длинных волн будет наблюдаться, если минимумы кривых соответствуют существенно различным межъядерным расстояниям. В промежуточном случае полоса флуоресценции будет иметь почти симметричную форму. Флуоресценция наблюдается в жидкой, твердой и даже газовой фазах. [c.52]

    Измерение фосфоресценции обычно проводят в твердой фазе при температуре жидкого азота, поскольку в жидких растворах фосфоресценция интенсивно тущится ничтожными количествами примесей. Для разделения обычной флуоресценции и фосфоресценции или замедленной флуоресценции необходимо периодически прерывать пучок возбуждающего света и регистрировать испускание только в течение темпового периода, т. е. когда короткоживу-щая флуоресценция оказывается полностью затухшей. В большинстве современных спектрофлуориметров это достигается тем, что при измерении спектров фосфоресценции вокруг образца вращается полый цилиндрический стакан, имеющий вырезы в боковой стенке. При вращении стакана вокруг его оси образец освещается возбуждающим светом, проходящим через вырезы, и долгоживущая люминесценция регистрируется через те же самые вырезы. Для измерения общей люминесценции вращающийся стакан надо удалить. Поскольку при использовании стакана с вырезами поглощается только некоторая доля возбуждающего света, то для определения полной скорости испускания долгоживущей люминесценции наблюдаемую интенсивность надо разделить на коэффициент фосфориметра, равный отношению светового периода к сумме времени светового и темпового периодов. Это справедливо, если время затухания долгоживущей люминесценции достаточно велико по сравнению со временем светового и темпового периодов, поскольку уменьшение интенсивности за воемя темпового периода будет [c.67]

    Выходы долгоживущей флуоресценции и фосфоресценции определяются тем же методом, что и выходы быстрой флуоресценции, т. е. сравнением площади под исправленным спектром испускания с площадью под спектром быстрой флуоресценции стандартного соединения. Для получения соответствующей величины площади интенсивность долгоживущей люминесценции нужно разделить на коэффициент фосфориметра. [c.70]

    Часто соединение, имеющее долгоживущую люминесценцию, также имеет и быструю флуоресценцию. Если выход последней уже определен обычным способом, то выходы фосфоресценции и замедленной флуоресценции при тех же условиях можно определить, не сравнивая с другим раствором. Отношение выхода замедленной флуоресценции к выходу быстрой флуоресценции вычисляется сравнением интенсивностей одного из главных максимумов в спектрах, которые идентичны по форме. Регистрируемый спектр испускания не надо исправлять, но следует сделать поправки на коэффициент фосфориметра и чувствительность прибора, при которой измеряются два спектра. [c.70]

    Интенсивность люминесценции, испускаемой раствором, прямо пропорциональна интенсивности возбуждающего света и общей чувствительности регистрирующей системы. Однако увеличивая мощность или эффективность источника возбуждения, нельзя неограниченно улучшать метод, т. е. уменьшать предельно обнару-жимую концентрацию раствора. Ниже определенной концентрации повышается роль других факторов, которые ограничивают возможность метода, и увеличение чувствительности прибора при этих условиях не дает результатов. Лимитирующим фактором могут быть фотохимические реакции или свет, попадающий на фотоумножитель не от исследуемого люминесцирующего раствора, а от посторонних источников, т. е. величина суммарного фона. Возникновению люминесцентного фона может способствовать ряд следующих факторов, связанных как с прибором, так и с анализируемым образцом рассеянный свет, рамановское испускание растворителя, люминесценция кювет и окружающего пространства, люминесци-рующие примеси, содержащиеся в растворителе или реагентах. [c.72]

    Рамановское испускание растворителя (комбинационное рассеяние). При комбинационном рассеянии света длина волны отличается от длины волны возбуждающего света. Это происходит потому, что при рассеянии света часть энергии пучка может перейти в энергию колебаний или, если облучаемая молекула находится в колебательно-возбужденном состоянии, то она может отдать колебательную энергию фотону. Идентифицировать полосы комбинационного рассеяния нетрудно, поскольку при изменении длины волпы возбуждающего света они всегда сдвинуты на одно и то же расстояние (в щкале волновых чисел) от линии возбуждения. Для уменьпюния рамаиовского рассеяния используют отсекающие фильтры или иа пути пучка флуоресценции помещают поляризатор, что уменьшает интенсивность рамановских полос, поскольку рамановское испускание достаточно поляризовано. [c.73]

    В присутствии значительных концентраций тушителей наблюдается статическое тушение, приводящее к уменьшению квантового выхода фосфоресценции без изменения времени затухания (аналогично статическому тушению флуоресценции). Некоторые соединения, в особенности содержащие тяжелые атомы, способствующие ин-теркомбинационной конверсии, образуют комплексы с фосфоресцирующим соединением, приводя к изменению времени затухания фосфоресценции и иногда даже к увеличению квантового выхода фосфоресценции вследствие увеличения константы скорости испускания фосфоресценции в таких комплексах. При этом затухание фосфоресценции происходит неэкспоненциально. В простейшем случае кинетика затухания представляет собой сумму двух экспонент, одна из которых соответствует свободным молекулам М, а другая— комплексу (М-р). Соотношение вкладов этих двух экспонент зависит ие только от концентрации комплексообразователя, по также от продолл<ительности возбуждающего импульса, поскольку время достижения стационарного состояния при заданной интенсивности возбуждающего света для частиц с разным време- [c.99]

    Эта стадия проводится, как правило, при комнатной температуре и интенсивном перемешивании. В бояьшигетвс случаев реакция сопровождается окрашиванием раствора, что может служить первичным признаком образования комплексного соединения. Согласно теории кристаллического поля [16] в металлах, обладающих незаполненным <1-подуровнем, при затрате некоторой энергии электрон на одной из с1 -орбиталей может возбуждаться и переходить на ( -орбиталь. При обратном переходе из возбужденного в нормальное состояние происходит испускание света с длиной волны, соответствующей указанной энергии возбуждения, что и обуславливает окраску комплекса. [c.61]

    В настоящее время в качестве источников света для атомно-абсорбционного анализа наиболее часто используют различные газоразрядные источники, спектр испускания которых совпадает со спектром определяемого атома. В этом случае не представляет труда получить в спектре испускания линии с шириной, меньшей ширины спектральных линий определяемых атомов, поскольку атомы, как правило, находятся при высоких температурах, что приводит к уширению их энергетических уровней и соответственно спектральных линий. При работе выбирают в спектре испускания одну из линий, обусловленную переходом на основной уровень (резонансную линию), и определяют ослабление ее интенсивности при прохождении излучения через слой поглощающих атомов. Очевидно, что поглощать данную спектральную линию будут атомы, находящиеся в оснавном состоянии. [c.35]


Смотреть страницы где упоминается термин Испускание, интенсивность: [c.121]    [c.286]    [c.379]    [c.451]    [c.25]    [c.78]    [c.123]    [c.145]    [c.145]    [c.151]    [c.159]    [c.487]    [c.55]    [c.69]    [c.101]    [c.119]    [c.145]    [c.145]   
Аналитическая химия. Кн.2 (1990) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Вычисление вероятности радиационного перехода р(Е) Форма и интенсивность рентгеновских полос испускания

Излучение испускание интенсивность. Интенсивность излучения

Положение, интенсивность и форма полос в электронных спектрах поглощения и испускания



© 2025 chem21.info Реклама на сайте