Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

дрозофилы

    Необходимым компонентом системы сплайсинга гигантских ядерных предшественников мРНК являются так называемые малые ядерные РНК- Эти РНК обогащены уридином, поэтому они получили название U РНК U1, U2, U3, U4 и т. д. Они легко разделяются с помощью электрофореза. Разные малые ядерные РНК отличаютсл числом нуклеотидов, входящих в их состав (от 90 до 400). Обнаружена исключительная консервативность нуклеотидных последовательностей малых ядерных РНК птиц, млекопитающих и дрозофилы. [c.177]


    Влияние степени конденсации хроматина на транскрипцию ярко проявляется в так называемом эффекте положения. Эффект положения открыт и лучше всего изучен у дрозофилы. В хроматине дрозофилы имеются участки сильно конденсированного хроматина, который не транскрибируется,— так называемого гетерохроматина. С помощью различных хромосомных перестроек можно переместить тот или иной участок активного в транскрипции хроматина н поместить его рядом с гетерохроматином. Эго приводит к подавлению транскрипции активного участка в большей или меньшей степени в зависимости от расстояния до гетерохроматинового участка чем он ближе, тем эффективнее подавляет транскрипцию. [c.256]

    Гены развития дрозофилы, причисленные к трем отдельным группам, сложным образом взаимодействуют между собой. Так, гены матери, определяющие пространственные координаты яйца, влияют на характер экспрессии генов сегментации, нарушая образование характерного рисунка под зебру , контролируемого геном / . [c.217]

    Многие спонтанные мутации эукариот, например у дрозофилы., также обусловлены внедрением мобильных элементов. Случаи внедрения и перемещения (транспозиции) таких мобильных элементов представляют собой достаточно редкие события (10 —10 5 в расчете на ген в одном поколении). Положение мобиль- [c.221]

    Промоторный район гена теплового шока дрозофилы, кодирующего белок с уМг=70 ООО, содержит следующую нуклеотидную последовательность  [c.200]

Рис. 116. Этапы раннего развития дрозофилы и его нарушения, вызываемые мутациями Рис. 116. Этапы <a href="/info/1339541">раннего развития</a> дрозофилы и его нарушения, вызываемые мутациями
Рис. 115, Схема линейного расположения доменов- пальцев) в составе фактора транскрнпцнн TFI1IA и белка, кодируемого геном Kruppel, управляю- чим развитием дрозофилы Рис. 115, <a href="/info/31597">Схема линейного</a> <a href="/info/168640">расположения доменов</a>- <a href="/info/1792620">пальцев</a>) в составе фактора транскрнпцнн TFI1IA и белка, кодируемого геном Kruppel, управляю- чим развитием дрозофилы
    Эти элементы ограничены инвертированными повторами, как и некоторые транспозоны прокариот (рис. 120, а). Примерами их могут служить Р-элемент дрозофилы и Ас-элемент кукурузы. Их рассмотрение показыва- [c.231]

    Эффект положения проявляется и на уровне отдельных генов. Так, часть рибосомных генов дрозофилы содержит небольшие гетерохроматиновые вставки. Конденсированное, неактивное состояние этих вставок распространяется на значительное расстояние вдоль хроматиновой фибриллы и подавляет транскрипцию на рас-ч тоянии нескольких тысяч пар нуклеотидов. [c.256]


    Ген рибосомной 5S-PHK у эукариот не связан с геном 45S-PHK и локализован не в ядрышке. У дрозофилы около 500 копий гена 5S-PHK расположены в правом плече хромосомы 2. За синтез 5S-PHK (нуклеотидная последовательность которой показана на рис. 15-12) ответственна РНК-полимераза III. Характерная особенность 5S-PHK состоит в том, что она может быть сложена по-разному, и до сих пор не ясно, каким способом или способами она укладывается в рибо сомах [87]. [c.227]

    Репликация ДНК в хромосомах дрозофилы была исследована также в быстро делящихся ядрах методом электронной микроскопии [191]. [c.273]

    В ней выделяются районы А и Б. Волнистой чертой отмечена после довательность, необходимая для экспрессии разных генов, кодирующих белки, индуцируемые в условиях теплового шока. Гены, к которым присоединяют этот участок промотора, начинают также активно экспрессироваться при тепловом шоке. В промоторных районах А и Б гена теплового шока дрозофилы подчеркнуты повторяющиеся четырехнуклеотидные мотивы T G и GTT . Наличие района Б необходимо для полной экспрессии гена. Элементы А и Б, взаимодействующие с белковыми факторами транскрипции, имеют сходные функциональные свойства и обладают синергическим действием, активируя транскрипцию. Гены теплового шока дрозофилы, введенные в клетки млекопитающих, начинают активно экспрессироваться при повышении температуры. Это говорит о том, что не только сами гены теплового шока, но и регуляторные компоненты этой системы генов достаточно консервативны в эволюции. [c.200]

    Еще одна регуляторная система, механизм которой проясняется,—это гены, стимулируемые стероидными гормонами. Белок-регулятор, связываясь с гормоном, приобретает способность садиться на регуляторные участки и активировать соответствующие гены. Описан также белок, который связывается с регуляторной областью геиов теплового шока дрозофилы и включает эти гены (см. с. 199). Тепловой шок вызывает переход этого белка из цитоплазмы в ядро и его связывание с последовательностью ДНК, обеспечивающей включение генов теплового шока. Предполагается, что, связываясь с ДНК вблизи промотора, он активирует РНК-полимеразу П. [c.250]

    Опыты с искусственными генными конструкциями, составленными из отрезков ДНК разного происхождения, выявили существование особого цис-действующегоэлемента регуляции генов эукариот, получившего название усилителя (энхансера) или активатора транскрипции. Энхансеры представлены короткими последовательностями ДНК, состоящими из отдельных элементов (модулей), включающих десятки нуклеотидных пар. Модули могут представлять собой повторяющиеся единицы. Энхансер увеличивает эффективность транскрипции гена в десятки и сотни раз. Впервые энхансеры были обнаружены в составе геномов животных ДНК-содержащих вирусов (5У40 и полиомы), где они обеспечивают активную транскрипцию вирусных генов. Извлеченные из вирусных геномов и включенные в состав искусственных генетических конструкций, они резко усиливали экспрессию ряда клеточных генов. Позднее были обнаружены собственные энхансеры генов эукариотической клетки. Особенность энхансеров состоит в том, что они способны действовать на больших расстояниях (более чем 1000 п. н.) и вне зависимости от ориентации по отношению к направлению транскрипции гена. Оказалось, что энхансеры могут располагаться как на 5 -, так и на З -конце фрагмента ДНК, включающего ген, а также в составе интронов (рис. П2, а). Например, энхансеры были выявлены в районе 400 п. н. перед стартом транскрипции генов инсулина и химо-трипсина крысы. В случае гена алкогольдегидрогеназы дрозофилы энхансер был локализован за 2000 п. н. перед промотором. Энхансеры обнаружены на З ч )ланге гена, кодирующего полипептидный гормон-плацентарный лактоген человека, а также в составе интронов генов иммуноглобулинов и коллагена. [c.203]

    Белок TF 1П А был первым эукариотическим регуляторным полипептидом транскрипции с известной аминокислотной последовательностью, для которого удалось построит доменную структурную модель. В этом белке выявлены 9 повторяющихся, но отличающихся друг от друга доменов — пальцев , каждый из которых включает около 30 аминокислот. Домены содержат инвариантные-участки, включающие два цистеиновых и два гистидиновых остатка, связанных с ионом цинка (рис. 115). Концы разных пальцев (петли) несут варьирующие аминокислотные остатки, среди которых встречаются положительно заряженные, которые, по-видимому, способны легко взаимодействовать с ДНК. Как оказалось, подобная структура регуляторного белка закодирована в ряде других генов, кодирующих регуляторные белки эукариот. Так, ген Kruppel (калека), контролирующий развитие дрозофилы, кодирует белок, содержащий четыре подобных домена. Такие домены обнаружены и в белках — рецепторах гормонов. Предполагается, что выступающие связывающиеся с ДНК разные пальцы, соединенные друг с другом гибкими мостиками, осуществляют сразу несколько контактов с ДНК. Такая модель строения TF П1 А позволяет предполо- [c.211]

    Самые ранние стадии развития дрозофилы, когда устанавливаются так называемые пространственные координаты эмбрионов, определяющие передний и задний или брюшной и спинной отделы, контролируются группой генов матери. Эти гены функционируют-на стадии образования яйца, и их продукты неравномерно распределяются по яйцеклетке. Предполагается, что материнские гены и нх продукты обеспечивают позиционную информацию, которая воспринимается генами, работающими после оплодотворения, в зиготе. Представление о наличии в цитоплазме яйца позиционной информации, определяющей направление развития групп эмбриональных клеток, подчеркивает роль взаимного влияния частей будущего эмбриона в развитии, но никак не вскрывает природы этих взаимодействий. Мутации в генах, определяющих структуру неоп-лодотворенного яйца, оказывают так называемый материнский эффект, нарушая развитие эмбриона. Например, структуры, свойственные данному району, заменяются иными, характерными для других районов развивающегося организма. Вероятно, такие материнские гены оказывают свое действие на стадии ядерного синцития, до образования клеток бластодермы, когда диффузия продуктов генов затрудняется в результате образования клеточной мембраны. Транскрипты таких генов локализуются в соответствующих отделах (например, переднем или заднем) неоплодотворенного яйца или развивающегося эмбриона. [c.214]


    Если транспозиции Р-алемента дрозофилы ограничены зародышевыми клетками, то перемещения Ас-элемента происходят и в соматических клетках у кукурузы. За перемещением таких элементов можно следить по распределению стенотипически нормальных и мутантных участков ткани — например, лишенных пигмента вследствие инактивации гена, определяющего пигментацию. Потомство клетки, содержащей только инактивированный ген(ы), также будет лишено пигмента. Вырезание мобильного элемента приводит к реактивации гена. Чем раньше оно произойдет в развитии мутантной непигментированной ткани, тем обширнее будет окрашенный участок, поскольку клетки наследуют активное состояние гена (рис. 120, б). Наблюдая подобные явления, Мак-Клинток сделала вывод о регуляторной функции перемещающихся элементов, назвав их контролирующими. Оказалось, что вырезание этих элементов происходит только в определенных тканях и в течение ограниченного периода развития растения. [c.232]

    Следующий важный этап развития заключается в установлении морфологических различий между сегментами, которые становятся зачатками головы, брюшка и грудных сегментов. Эги процессы контролируются третьей группой генов дрозофилы. Мутации в этих генах приводят к ошибкам при формообразовании сегментов тела например, головной сегмент может образовать ногу, а один иа фудных, с которым в норме связано жужжальце, вторую пару крыльев. В результате нормально (или почти нормально) а рмиро- [c.214]

    Гены, контролирующие развитие дрозофилы, могут быть достаточно протяженными и включать многие десятки тысяч нуклеотидных пар ДНК Например, длина первичного транскрипта локуса ВХ очень велика, она достигает 70 т. п. н. В состав ряда таких генов входят необычно длинные интроны. Возможно, альтернативные пути сплайсинга (процессинга) длинных первичных транскриптов локуса ВХ приводят к образованию целого набора мРНК, которые транслируются в разных группах клеток с образованием белков, несущих разные функции. Однако детали строения этих генов и особенности регуляции их активности еще мало исследованы. [c.217]

    Деконденсацию хроматина прн транскрипции можно также наблюдать с помощью светового микроскопа на политенных хромосомах дрозофилы. Такие хромосомы содержатся во многих тканях личинок насекомых. Политенные хромосомы дрозофилы состоят примерно из 1000 нитей ДНК, лежащих рядом друг с другом таким образом, что гомологичные участки соседствуют и образуют поперечные полоски. Политенные хромосомы соответствуют интерфазному хроматину. Каждый функциональный домен в политенной хромосоме представлен Б виде диска, содержащего плотно-упакованную ДНК. Диски разделены менее плотными междисковыми участками. Чередование дисков и междисков образует характерную строго постоянную картину, причем крупные генетические перестройки проявляются в видимых изменениях хромосом. В ходе индивидуального развития личинок картина дисков и междисков несколько меняется. Но особенно ярко изменения транскрипционной активности хроматина политенных хромосом проявляются при индукции генов. Такая индукция достигается, например, при нагревании личинок (так называемый тепловой шок) или при введении гормона насекомых экдизона. При активации транскрипции происходит резкая деконденсация хроматина в определенных дисках и образуются так называемые пуфы. В пуфах можно обна- [c.252]

    Высокая консервативность гомеоблока проявляется не только при исследовании разных генов развития у дрозофилы. Перекрестная гибридизация с гено.мами червей, иглокожих и позвоночных, включая человека, выявила наличие нескольких фрагментов геномной ДНК, гибридизующихся с гомеоблоком дрозофилы. Если гены этих организмов, содержащие подобные последовательности, также вовлечены в регуляцию ключевых этапов развития, то гомеоблок дрозофилы может рассматриваться как способ их выявления и клонирования. Регуляторные механиз.мы, контролирующие развитие, могут оказаться более универсальными, чем ожидалось. [c.218]

    Один нз способов перемещения требует прежде всего образования РНК-матрицы, которая копируется при участии обратной траискриптазы (рис. 118). Эго было экспериментально доказано для ретротранспозонов дрожжей и дрозофилы. Ретротранспозоны транскрибируются с помощью РНК-полимеразы I. В составе ДКП имеются сайты инициации транскрипции и сигналы полиа-Деннлирования. ДКП могут служить активными промоторами, ванскрипция начинается в одном ДКП (условно левом, 5 -ДКП) [c.227]

    Согласно предположению И. А. Рапопорта (1966), в мутагенезе, вызываемом органическими веществами, обнаруживается определенная закономерность. Она выражается в том, что в каждом гомологическом ряду только один член обладает обычно высокой мутагенной активностью. Как правило, им является первый член ряда. В связи с этим целесообразно при рассмотрении биологической активности этиленимина особое внимание уделить его мутагенной, гонадотропной и эмбриотропной активности. В 1962 г. И. А. Рапопорт проводил исследования по оценке мутагенной активности этиленимина с помощью метода изучения сцепленных с полом мутаций на дрозофиле (на уровне смертельных доз). Автор установил, что этиленимин вызывает усиление указанного эффекта в 270 раз по сравнению с контролем. [c.259]

    Выбранный фрагмент ДНК (в данном случае из генома дрозофилы) встраивали в плазмиду, которую отбирали, размножали и очищали методами генной инженерии (1). Затем ее линеаризировали обработкой рестриктазой, не затрагивающей встроенный фрагмент (2). После этого с помощью ограниченного гидролиза экзо-нуклеазой III (30 мин при 0°) удаляли с З -концов каждой из нитей около 300 оснований (3). Обработанную таким образом ДНК сажали на активированную по методу Нойеса и Старка (см. выше) л-амино-бензилоксиметилцеллюлозу. Ковалентное присоединение происходило по однопитевым концам молекулы (через Се гуаниловых остатков). Так получали сорбент с экспонированными, заранее выбранными фрагментами двунитевой ДНК (4). [c.425]

    Для полного извлечения нуяшого бе.ика экстракт, прошедший через колонку в исходном буфере, после окончания элюции и нового уравновешивания колонки буфером пропускали через нее повторно и элюировали по той же схеме так повторяли 8 раз. В итоге нуж-1[ЫЙ белок ( DB-1 ) из 1 кг яиц дрозофилы получали очищенным в 200 ООО раз. [c.425]

    У любых организмов в гаплоидном наборе генов содержится, как правило, лишь один ген данного типа. Что же касается рибосомной РНК, то ее гены представлены в одном геноме множеством копий. Так, например, у дрозофилы обнаруживается 130—190 копий гена 45S-PPHK. [c.227]

    Изучение частот рекомбинаций между различными штаммами фагов вскоре показало, что некоторые сайты мутаций тесно сцеплены друг с другом. Рекомбинация между такими сайтами происходит редко. Другие же сайты сцеплены слабо друг с другом, и рекомбинации между ними происходят часто. Эта ситуация напоминает обнаруженную на много лет раньше ситуацию с генами плодовой мушки (дрозофилы)кукурузы и других высших организмов. Главная идея, на которой основано картирование хромосом любого организма, состоит в предположении, что частота реком- РИС. 15-20. Стерильные пятна, образованные бак- [c.249]

    Большинство клеток высших организмов обычно имеет диплоидный набор хромосом, однако в некоторых из них набор хромосом может быть удвоен или увеличен в еще большее число раз. Клетка, в которой число хромосом увеличено по сравнению с диплоидным в два раза, называется тетраплоидной, а в большее число раз — полиплоидной. Селекционерам удалось получить много разновидностей тетраплоидных цветковых растений, размеры которых, как правило, больше диплоидных, Большинство клеток нашего организма также диплоидные, однако и у нас имеются полиплоидные клетки. Некоторые из них, например, обнаруживаются в печени. Наиболее выразительным примером увеличения содержания ДНК в клетке могут служить гигантские политенные хромосомы личинки двукрылых. ДНК клеток слюнных желез и некоторых других частей этих личинок может удваиваться без деления клетки приблизительно в 13 раз, причем количество ДНК может возрастать при этом в несколько тысяч раз (например, в 2 раз). Сусперсппрализованные удвоенные молекулы ДНК располагаются ря-до.м друг с другом в более вытянутой форме, чем в обычных хромосомах. Общая длина четырех гигантских хромосом дрозофилы составляет приблизительно 2 мм, тогда как в обычной диплоидной клетке их длина равна 7,5 мкм. Гигантские хромосомы имеют поперечнополосатую структуру по всей длине хромосомы можно видеть приблизительно 3000 поперечных дисков. Поскольку было установлено наличие корреляции между видимыми изменениями дисков I и коакретиыми [c.267]

    В геноме такого простого эукариота, как плесневый гриб Di tyoste-Иит, содержится в 11 раз больше ДНК, чем в геноме Е. соИ. У дрозофилы— высшего организма с наименьшим количеством ДНК—размер гаплоидного генома в 24 раза больше размера генома Е. соИ. Кодирующая емкость генома человека в 600 раз больше, чем у бактерии (табл. 1-3). Столь большое количество ДНК является одной из причин, затрудняющих изучение эукариотического генома. Другая трудность обусловлена тем, что процесс транскрипции генов у эукариот может сильно изменяться как во времени, так и в зависимости от условий окружающей среды. Следовательно, механизмы регуляции фенотипического выражения генов должны быть очень сложными. [c.296]


Смотреть страницы где упоминается термин дрозофилы: [c.50]    [c.186]    [c.206]    [c.212]    [c.224]    [c.227]    [c.230]    [c.231]    [c.231]    [c.253]    [c.255]    [c.240]    [c.425]    [c.448]    [c.448]    [c.489]    [c.249]    [c.256]    [c.267]   
Молекулярная биология клетки Том5 (1987) -- [ c.90 ]




ПОИСК







© 2025 chem21.info Реклама на сайте