Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышцы также Гладкие мышцы Мышечное

    До сих пор мы обсуждали только свойства фермента мишени. Локализация этого фермента также может варьировать в широких пределах. У млекопитающих мишенью могут служить дыхательный центр мозга, гладкие мышцы бронхов или нервно-мы-шечные соединения грудных мышц. Локализация мишени зависит не только от природы ФОС, но и от вида животного (стр. 208). Эти различия могут иметь практическое значение так, если соединение обладает одинаковой токсичностью для двух видов животных, но у вида А действует первично на дыхательный центр, а у вида Б — на нервно-мышечное соединение, то при введении в молекулу соединения четвертичного азота (или другой катионной группы) его эффективность в отношении вида А снизится, а действие на вид Б почти не изменится (стр. 221). [c.390]


    В гладких мышечных волокнах отсутствуют также цистерны с ионами кальция. Под действием нервного импульса ионы Са поступают в саркоплазму из внеклеточного вещества. Поступают ионы кальция в саркоплазму медленно и также медленно уходят из волокна после прекращения поступления нервного импульса. Поэтому гладкие мышцы медленно сокращаются и медленно расслабляются. [c.134]

    По действию такого рода лигандов различают два типа холинергических нейронов никотиновые и мускариновые (никотин и мускарин — агонисты). Никотиновые рецепторы содержатся в нервно-мышечных синапсах скелетных мышц и в вегетативных ганглиях мускариновые — в гладких мышцах и мозге. Эти два типа холинергических синапсов различаются также по действию на них антагонистов. Никотиновые синапсы блокируются курареподобными ядами и ядами змей семейства аспидов (например, кобры) мускариновые синапсы блокируются атропином. Некоторые антагонисты образуют очень прочные соединения с рецепторами и используются при выделении этих белков из гомогенатов синаптосом. [c.544]

    При декарбоксилировании аминокислот образуются биогенные амины. Основными биогенными аминами являются у-аминомасляная кислота, гистамин, серотонин и креатин. ГАМК образуется в мозге из глутаминовой кислоты. Накопление ее в мозге приводит к развитию процессов торможения в моторных центрах ЦНС. Гистамин образуется в различных тканях при декарбоксилировании гистидина и поэтому называется тканевым гормоном. Он вызывает расширение мелких кровеносных сосудов и сужение крупных, а также сокращение гладких мышц внутренних органов. Гистамин участвует в возникновении болевого синдрома, стимулирует образование соляной кислоты в желудке. Серотонин образуется из триптофана. Он участвует в регуляции артериального давления, температуры тела, частоты дыхания, почечной фильтрации. В больших дозах серотонин стимулирует, а в малых — подавляет деятельность ЦНС. Креатин синтезируется в тканях из заменимых аминокислот аргинина и глицина (рис. 87). Под действием креатинкиназы и АТФ он превращается в креатинфосфат, который используется для ресинтеза АТФ в мышцах (см. главы 3 и 15). Количество креатинфосфата пропорционально мышечной массе. Креатин и креатинфосфат превращаются в креатинин, который выводится с мочой. Количество креатинина, выделяющегося из организма, пропорционально общему содержанию креатинфосфата и может использоваться для характеристики массы мышц. При уменьшении мышечной массы уменьшается также содержание креатинина в моче. [c.235]


    У животных и человека имеются два основных типа мышц попе-речно-полосатые и гладкие. Поперечно-полосатые мышцы прикрепляются к костям, т. е. к скелету, и поэтому еще называются скелетными. Поперечно-полосатые мышечные волокна составляют также основу сердечной мышцы - миокарда, хотя имеются определенные различия в строении миокарда и скелетных мышц. Гладкие мышцы образуют мускулатуру стенок кровеносных сосудов, кишечника, пронизывают ткани внутренних органов и кожу. [c.124]

    Миозин является белком многих качеств. В сокращении скелетных, сердечных и гладких мышц и во внутриклеточных движениях он одновременно выполняет, по крайней мере, три ключевых функции - структурную, аллостерическую и ферментативную. Наиболее полезная информация о функциях миозина была получена при исследовании поперечнополосатых скелетных мышц, сокращающихся произвольно, а также аналогичных тканей беспозвоночных, прежде всего летательных мышц насекомых. Электронно-микроскопическое изучение продольных и поперечных тонких срезов скелетных мышц, впервые проведенное в 1953 г. X. Хаксли, выявило высокий уровень их структурной организации [439]. Уже в следующем году X. Хаксли вместе с Дж. Хенсоном предложили так называемую модель скользящих нитей, которая имела основополагающее значение для понимания природы и молекулярного механизма мышечных сокращений [440]. Скелетные мышцы - это пучки мышечных волокон, наиболее крупным повторяющимся структурным элементом которых является миофибрилла - цилиндрическая нить диаметра 1-2 мкм (1000-2000 А), идущая от одного конца клетки до другого. Миофибрилла, в свою очередь, содержит белковые филамен-ты двух типов толстые и тонкие. Основной белок толстых нитей - миозин, тонких - актин. Миозиновые и актиновые филаменты в миофиб-рилле строго упорядочены. Функциональной сократительной единицей миофибриллы является саркомера, имеющая длину около 2,5 мкм и разделяющаяся на I- и А-диски (рис. 1.31). Толстые филаменты (длина 1,6 мкм и толщина 0,015 мкм) тянутся от одного края А-диска до другого, а тонкие (длина 1,0 мкм и толщина 0,008 мкм) идут от [c.120]

    ПО Т-трубочкам, саркоплазматический ретикулум выбрасывает в цитозоль большие количества ионов Са , что посредством вспомогательных мышечных белков поддерживает нужное расположение активных миозиновых филаментов и тем самым инициирует сокращение мио-фибрилл. В гладких мышцах изменение концентрации ионов Са +, помимо влияния гормонов, определяется также Са-связывающим белком -кальмодулином. В комплексе с Са + он активирует киназу легких цепей миозина. Образовавшийся тройной комплекс индуцирует каскад реакций сокращения мышц (рис. 1.36). Сигнал от мембраны мышечной клетки через Т-трубочки и саркоплазматический ретикулум доходит до саркомеры за несколько миллисекунд, поэтому все миофибриллы мышечной клетки сокращаются практически одновременно. Связь мышечного сокращения с изменениями концентрации Са " обусловлена функциями вспомогательных белков тропомиозина и тропонина, ассоциированных с актиновыми филаментами (рис. 1.32). Они участвуют в регуляции мышечного сокращения ионами Са + и тем самым делают АТРазную активность миозина чувствительной к концентрации этих ионов. [c.129]

    Не все ГМК имеют нервно-мышечные синапсы. Те клетки, которые снабжены синапсами, названы ключевыми . От них потенциал передается другим лейомиоцитам через нексусы. Миоциты активируются также медиаторами из варикозных расширений терминалей, расположенных на расстоянии не менее 100 нм, путем диффузии этих веществ. В отличие от поперечнополосатых мышц в гладкой мускулатуре имеется и возбуждающая, и тормозящая иннервация. Так, в гладких мышцах матки, пищеварительного тракта и бронхов возбуждающим медиатором служит ацетилхолин, а тормозным — норадрена-лин. В гладкой мускулатуре сфинктера мочевого пузыря и сосудов возбуждающим медиатором является норадреналин, а тормозным — ацетилхолин. Он же оказывает тормозное действие на пейсмекерные клетки сердца. [c.118]

    Витамин Е (токоферолы) играет существенную роль в обмене веществ в скелетных мышцах у млекопитающих. При недостатке витамина Е наблкэдается дегенерация центральной нервной системы. Отсутствие или недостаточцость витамина Е в пище приводит не только к стерильности самцов и самок, но к пищевой мышечной дистрофии, изменениям в гладкой мускулатуре, расстройству сосудистой системы, дегенерации центральной нервной системы, а также к задержке роста. Механизм физиологического действия не выяснен. Витамин Е существенно важен в жировом обмене. [c.427]

    До сих пор мы рассматривали лишь один из трех главных типов мышц, имеющихся у позвоночных, а именно скелетные мышцы. Два других-это серОечная мышца, которая за среднее время жизни человека успевает совершить около трех миллиардов циклов сокращения и расслабления, и гладкая мускулатура, обеспечивающая более медленное и продолжительное сокращение, характерное для таких органов, как кишечник. Во всех трех типах мышечных клеток, а также в еше одном типе сократи- [c.267]


    Из шести вариантов актина, экспрессируемых у млекогаггающих один содержрггся только в скелетных мышцах, другой - в сердечной мышце, а еще два - только в гладкомышечных клетках (первый из них - в гладкой мускулатуре сосудов, а второй в мускулатуре других органов) и наконец, два последних варианта, известные как немышечные, или цитоплазматические, актины, являются, но-видимому, универсальными компонентами цитоскелета и в значительных количествах присутствуют в большинстве немышечных клеток. Все эти виды, или изоформы, актина очень сходны по аминокислотным последовательностям например, мышечные актины отличаются от цитоплазматических менее чем по 7% аминокислот. Если не считать некоторых различий в N-концевой части молекулы, возможно, влияющих на процесс полимеризации актина, не ясно, имеют ли такие различия какое-либо функциональное значение. Экспрессия гена сердечного актина в культивируемых фибробластах не изменяет ни форму, ни поведение клеток, и синтезируемый белок легко включается в их нормальные актиновые структуры. Напротив, различия между миозинами влияют и на скорость сокращения, и на его регуляцию, а также на стенень ассоциации молекул миозина в клетке. [c.272]

    Появление предложенной И. Рейментом и X. Холденом атомномолекулярной модели актомиозинового комплекса явилось неординарным событием в современной молекулярной биологии, поскольку свидетельствовало, что в силу различных причин (быть может, из-за меньшей сложности) изучение функционирования мышечной системы могло опередить исследования, в принципе аналогичного плана и той же цели, других молекулярных биосистем, функционирование которых сопряжено с трансформацией разных видов энергии [471]. Поэтому прослеживание пути, приведшего к созданию модели актомиозинового молекулярного мотора, может иметь значение, выходящее за пределы механики сокращений скелетных мышц. Речь идет не только (и не столько) об использовании накопленного опыта и полученных результатов в исследовании близкородственных скелетной мускулатуре видов мышечной ткани сердечной и гладкой мускулатуры, функционирующих непроизвольно, или в исследовании жгутиков бактерий и ресничек инфузорий, а также некоторых клеток животных и растений. Экстенсивное развитие этой области очевидно и не требует особых комментариев. Не будем подробно распространяться и о расширившихся в последние годы возможностях в экспериментальном исследовании процесса мышечных сокращений [485]. Отметим лишь, что наиболее заметным событием здесь явилось привлечение хорошо дополняющих рентгеноструктурный анализ и электронную микроскопию методов молекулярной генетики и метода "лазерной ловушки" [486, 487]. Последний позволяет наблюдать за перемещениями [c.130]

    По физиологическим особенностям мышечные ткани делят на произвольные и непроизвольные, а также на тонические (гладкая и сердечная мускулатура) и тетанические (поперечнополосатые мышцы). Различают висцеральную мускулатуру (мышцы внутренних органов) и соматическую (цвигательную). [c.9]

    У иглокожих мышечная ткань строится из гладкомышечных клеток. Так, у морских ежей мышцы жевательного аппарата (аристотелев фонарь) представляют собой длинные гладкие одноядерные клетки. Мышцы, двигающие иглы и амбулакральные ножки, также состоят из гладкомышечных клеток, содержаших тонкие и толстые миофиламенты. У морских звезд гладкая мускулатура описана в амбулакральных ножках и стенке тела. У голотурий стенки тела содержат мощные продольные ленты из гладкомышечных одноядерных клеток с прослойками соединительной ткани между ними. Длина одиночной клетки (мышечного волокна) достигает 240—550 мкм, а поперечник — 2,6—6,0 мкм. Эти клетки связаны отростками с другими мышечными клетками, соединительной тканью и нервными терминалями. Толстые филаменты в таких клетках имеют поперечник 20—50 нм, а тонкие — 7 нм. Толстая нить окружена 10—12 тонкими, в толстые филаменты входит парамиозин. [c.72]

    Клетки скелетных мышц, сократительный аппарат которых детально рассмотрен в гл. И, ответственны практически за все произвольные движения. Эти клетки могут иметь огромные размеры (до полуметра в длину и до 100 мкм в диаметре у взрослого человека) и за свою форму получили также название мышечных волокон. Каждая такая клетка представляет собой синцитий, содержащий много ядер в общей цитоплазме. В отличие от этого мышечные клетки трех других типов имеют более обычное строение - в них только по одному ядру. Клетки сердечной мышцы сходны с волокнами скелетной мускулатуры в том отношении, что нити актина и миозина в них образуют упорядоченные системы, придающие клетке исчерченный вид. Гладкомышечные клетки получили свое название потому, что они, напротив, не выглядят исчерченными. Функции у гладкой мускулатуры весьма разнообразны - от проталкивания пищи по пищеварительному тракту до поднятия шфсти дыбом при холоде или страхе. Миоэпителиальные клетки (тоже лишенные исчфченности) в отличие от клеток трех других типов лежат в эпителии и происходят из эктодермы. Эти клетки образуют мускулатуру радужной оболочки глаза, расширяющую зрачок, а также используются для выдавливания слюны, пота и молока из соответствующих желез (см. рис. 17-36, Д). [c.190]


Смотреть страницы где упоминается термин Мышцы также Гладкие мышцы Мышечное: [c.380]    [c.317]    [c.29]    [c.170]    [c.448]    [c.190]   
Молекулярная биология клетки Том5 (1987) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Мышца



© 2025 chem21.info Реклама на сайте